Skip to main content
Log in

Comparison of Radial Basis Functions

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

A survey of algorithms for approximation of multivariate functions with radial basis function (RBF) splines is presented. Algorithms of interpolating, smoothing, selecting the smoothing parameter, and regression with splines are described in detail. These algorithms are based on the feature of conditional positive definiteness of the spline radial basis function. Several families of radial basis functions generated by means of conditionally completely monotone functions are considered. Recommendations for the selection of the spline basis and preparation of initial data for approximation with the help of the RBF spline are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schaback, R., Native Hilbert Spaces for Radial Basis Functions. I, in New Developments in Approximation Theory, Muller, M.W., Buhmann, M.D., Mache, D.H., and Felten, M., Eds., Basel: Birkhauser, 1999, pp. 255–282.

    Chapter  Google Scholar 

  2. Madych, W.R. and Nelson, S.A., Multivariate Interpolation and Conditionally Positive Definite Functions. II, Math. Comput., 1990, vol. 54, pp. 211–230.

    Article  MathSciNet  MATH  Google Scholar 

  3. Wendland, H., Scattered Data Approximation, Cambridge: Cambridge University Press, 2005.

    MATH  Google Scholar 

  4. Powell, M.J.D., The Theory of Radial Basis Function Approximation, Preprint/DAMTP;NA11, Cambridge, 1990.

    Google Scholar 

  5. Schaback, R. and Wendland H., Characterization and Construction of Radial Basis Functions, in Multivariate Approximation and Applications, Din, N., Leviatan, D., Levin, D., and Pinkus, A., Eds., Cambridge: Cambridge University Press, 2001, pp. 1–24.

    Google Scholar 

  6. Rozhenko, A.I., Teoriya i algoritmy variatsionnoi splain-approksimatsii (Theory and Algorithms of Variational Spline Approximation), Novosibirsk: ICMMG SB RAS, 2005.

    Google Scholar 

  7. Kovalkov, A.V., On an Algorithm for Constructing Splines with Discrete Inequality Constraints, SERDIKA, Bolgarsko Matematichesko Spisanie, 1983, vol. 9, no. 4, pp. 417–424.

    MathSciNet  MATH  Google Scholar 

  8. Rozhenko, A.I. and Fedorov, E.A., On the Algorithm of Smoothing by a Spline with Bilateral Constraints, Sib. Zh. Vych. Mat., 2016, vol. 19, no. 3, pp. 331–342

    MATH  Google Scholar 

  9. Atteia, M., Fonctions “Spline” etNoyaux Reproduissants d’Aronszain–Bergman, RAIRO, 1970, vol. 4, no. 3, pp. 31–43.

    Article  Google Scholar 

  10. Bezhaev, A.Yu., Reproducing Mappings and Vector Spline-Functions, Sov. J. Num. An. Math. Modell., 1990, vol. 5, no. 2, pp. 91–109.

    MathSciNet  MATH  Google Scholar 

  11. Vasilenko, V.A., Teoriya splain-funktsii (The Theory of Spline Functions), Novosibirsk: NGU, 1978.

    Google Scholar 

  12. Fasshauer, G.E., Green’sFunctions: Taking Another Look at Kernel Approximation, Radial Basis Functions, and Splines, Approximation Theory XIII: San Antonio 2010, Neamtu, M. and Schumaker, L., Eds., Springer, 2012, pp. 37–63.

    Chapter  Google Scholar 

  13. Anselone, P.M. and Laurent, P.J., A General Method for the Construction of Interpolating or Smoothing Spline-Functions, Num. Math., 1968, vol. 12, pp. 66–82.

    Article  MathSciNet  MATH  Google Scholar 

  14. Reinsch, C.H., Smoothing by Spline Functions. II, Numer. Math., 1971, vol. 16, no. 5, pp. 451–454.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gordonova, V.I. and Morozov, V.A., Numerical Algorithms for Selection of Parameters in the Regularization Method, Zh. Vych. Mat. Mat. Fiz., 1973, vol. 13, no. 3, pp. 539–545.

    MathSciNet  Google Scholar 

  16. Bezhaev, A.Yu. and Vasilenko, V.A., Variational Spline Theory, Novosibirsk: NCC, 1993.

    MATH  Google Scholar 

  17. Rozhenko, A.I., On Optimal Choice of Spline-Smoothing Parameter, Bull. Novosibirsk Comput. Center. Ser. Num. An., Novosibirsk: NCC, 1996, iss. 7, pp. 79–86.

    MATH  Google Scholar 

  18. Rozhenko, A.I., A New Method for Finding an Optimal Smoothing Parameter of the Abstract Smoothing Spline, J. Approx. Theory, 2010, vol. 162, pp. 1117–1127; DOI:10.1016/j.jat.2009.08.002.

    Article  MathSciNet  MATH  Google Scholar 

  19. Mokshin, P.V. and Rozhenko, A.I., On Finding an Optimal Smoothing Parameter, Sib. Zh. Ind. Mat., 2015, vol. 18, no. 2(62), pp. 63–73.

    MathSciNet  MATH  Google Scholar 

  20. Ivanova, E.D., Acceleration of Convergence of Algorithm for Selecting a Smoothing Parameter by the Method of Asymptotic Estimates, Final qualification master’s work, Novosibirsk State University, 2011.

    Google Scholar 

  21. Rozhenko, A.I., Abstraktnaya teoriya splainov (Abstract Theory of Splines), Novosibirsk: NSU, 1999.

    Google Scholar 

  22. Grubbs’ Test for Outliers; https://en.wikipedia.org/wiki/Grubbs’_test_for_outliers.

  23. Netflix Prize; https://en.wikipedia.org/wiki/Netflix_Prize.

  24. Dubrule, O., Geostatistics for Seismic Data Integration in Earth Models, Tulsa: Society of Exploration Geophysicists and European Association of Geoscientists and Engineers, 2003.

    Book  Google Scholar 

  25. Micchelli, C.A., Interpolation of Scattered Data: Distance Matrices and Conditionally Positive Definite Functions, Constr. Approx., 1986, vol. 2, pp. 11–22.

    Article  MathSciNet  MATH  Google Scholar 

  26. Duchon, J., Fonctions-Spline à Ènergie Invariante par Rotation, Preprint/RR; 27, Grenoble, 1976.

    Google Scholar 

  27. Ignatov, M.I. and Pevnyi, A.B., Natural’nye splainy mnogikh peremennykh (Multivariate Natural Splines), Leningrad: Nauka, 1991.

    Google Scholar 

  28. Volkov, Yu.S. and Miroshnichenko, V.L., The Construction of a Mathematical Model of Universal Characteristics of a Radial-Axial Turbine, Sib. Zh. Ind. Mat., 1998, vol. 1, no. 1, pp. 77–88.

    MATH  Google Scholar 

  29. Bogdanov, V.V., Karsten, W.V., Miroshnichenko, V.L., and Volkov, Yu.S., Application of Splines for Determining the Velocity Characteristic of a Medium from a Vertical Seismic Survey, Central European J.Math., 2013, vol. 11, no. 4, pp. 779–786.

    MathSciNet  MATH  Google Scholar 

  30. Mitáš, L. and Mitášová, H., General Variational Approach to the Interpolation Problem, Comput. Math. Appl., 1988, vol. 16, no. 12, pp. 983–992.

    Article  MathSciNet  MATH  Google Scholar 

  31. Mitášová, H. and Mitáš, L., Interpolation byRegularized Splineswith Tension: I. Theory and Implementation, Math. Geol., 1993, vol. 25, iss. 6, pp. 641–655.

    Article  Google Scholar 

  32. Rozhenko, A.I. and Shaidorov, T.S., On the Construction of Splines by the Reproducing Kernel Method, Sib. Zh. Vych. Mat., 2013, vol. 16, no. 4, pp. 365–376.

    MathSciNet  Google Scholar 

  33. Rozhenko, A.I., On a New Family of Conditionally Positive Definite Radial Basis Functions, Tr. IMM UrO RAN, 2013, vol. 19, no. 2, pp. 256–266.

    MathSciNet  Google Scholar 

  34. Rozhenko, A.I., New Families of Radial Basis Functions, in Constructive Theory of Functions, Ivanov, K., Nikolov, G., and Uluchev, R., Eds., Marin Drinov Academic Publishing House, 2014, pp. 217–233; http://www.math.bas.bg/mathmod/Proceedings_CTF/CTF-2013/files_CTF-2013/17-Rozhenko.pdf.

    Google Scholar 

  35. Spravochnik po spetsial’nym funktsiyam s formulami, grafikami i matematicheskimi tablitsami (Handbook ofMathematical Functions with Formulas, Graphs, and Mathematical Tables), Abramowitz,M. and Stegun, I.A., Eds., New York: Dover Publications, 1972.

  36. Matérn, B., Spatial Variation, 2nd ed., Berlin: Springer, 1986.

    Book  MATH  Google Scholar 

  37. Duchon, J., Spline Minimizing Rotation-Invariant Seminorms in Sobolev Spaces, in Constructive Theory of Functions of Several Variables, Berlin: Springer, 1977, pp. 85–100.

    Chapter  Google Scholar 

  38. Principal Component Analysis; https://en.wikipedia.org/wiki/Principal_component_analysis.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Rozhenko.

Additional information

Original Russian Text © A.I. Rozhenko, 2018, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2018, Vol. 21, No. 3, pp. 273–290.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhenko, A.I. Comparison of Radial Basis Functions. Numer. Analys. Appl. 11, 220–235 (2018). https://doi.org/10.1134/S1995423918030047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423918030047

Keywords

Navigation