Abstract
A survey of algorithms for approximation of multivariate functions with radial basis function (RBF) splines is presented. Algorithms of interpolating, smoothing, selecting the smoothing parameter, and regression with splines are described in detail. These algorithms are based on the feature of conditional positive definiteness of the spline radial basis function. Several families of radial basis functions generated by means of conditionally completely monotone functions are considered. Recommendations for the selection of the spline basis and preparation of initial data for approximation with the help of the RBF spline are given.
Similar content being viewed by others
References
Schaback, R., Native Hilbert Spaces for Radial Basis Functions. I, in New Developments in Approximation Theory, Muller, M.W., Buhmann, M.D., Mache, D.H., and Felten, M., Eds., Basel: Birkhauser, 1999, pp. 255–282.
Madych, W.R. and Nelson, S.A., Multivariate Interpolation and Conditionally Positive Definite Functions. II, Math. Comput., 1990, vol. 54, pp. 211–230.
Wendland, H., Scattered Data Approximation, Cambridge: Cambridge University Press, 2005.
Powell, M.J.D., The Theory of Radial Basis Function Approximation, Preprint/DAMTP;NA11, Cambridge, 1990.
Schaback, R. and Wendland H., Characterization and Construction of Radial Basis Functions, in Multivariate Approximation and Applications, Din, N., Leviatan, D., Levin, D., and Pinkus, A., Eds., Cambridge: Cambridge University Press, 2001, pp. 1–24.
Rozhenko, A.I., Teoriya i algoritmy variatsionnoi splain-approksimatsii (Theory and Algorithms of Variational Spline Approximation), Novosibirsk: ICMMG SB RAS, 2005.
Kovalkov, A.V., On an Algorithm for Constructing Splines with Discrete Inequality Constraints, SERDIKA, Bolgarsko Matematichesko Spisanie, 1983, vol. 9, no. 4, pp. 417–424.
Rozhenko, A.I. and Fedorov, E.A., On the Algorithm of Smoothing by a Spline with Bilateral Constraints, Sib. Zh. Vych. Mat., 2016, vol. 19, no. 3, pp. 331–342
Atteia, M., Fonctions “Spline” etNoyaux Reproduissants d’Aronszain–Bergman, RAIRO, 1970, vol. 4, no. 3, pp. 31–43.
Bezhaev, A.Yu., Reproducing Mappings and Vector Spline-Functions, Sov. J. Num. An. Math. Modell., 1990, vol. 5, no. 2, pp. 91–109.
Vasilenko, V.A., Teoriya splain-funktsii (The Theory of Spline Functions), Novosibirsk: NGU, 1978.
Fasshauer, G.E., Green’sFunctions: Taking Another Look at Kernel Approximation, Radial Basis Functions, and Splines, Approximation Theory XIII: San Antonio 2010, Neamtu, M. and Schumaker, L., Eds., Springer, 2012, pp. 37–63.
Anselone, P.M. and Laurent, P.J., A General Method for the Construction of Interpolating or Smoothing Spline-Functions, Num. Math., 1968, vol. 12, pp. 66–82.
Reinsch, C.H., Smoothing by Spline Functions. II, Numer. Math., 1971, vol. 16, no. 5, pp. 451–454.
Gordonova, V.I. and Morozov, V.A., Numerical Algorithms for Selection of Parameters in the Regularization Method, Zh. Vych. Mat. Mat. Fiz., 1973, vol. 13, no. 3, pp. 539–545.
Bezhaev, A.Yu. and Vasilenko, V.A., Variational Spline Theory, Novosibirsk: NCC, 1993.
Rozhenko, A.I., On Optimal Choice of Spline-Smoothing Parameter, Bull. Novosibirsk Comput. Center. Ser. Num. An., Novosibirsk: NCC, 1996, iss. 7, pp. 79–86.
Rozhenko, A.I., A New Method for Finding an Optimal Smoothing Parameter of the Abstract Smoothing Spline, J. Approx. Theory, 2010, vol. 162, pp. 1117–1127; DOI:10.1016/j.jat.2009.08.002.
Mokshin, P.V. and Rozhenko, A.I., On Finding an Optimal Smoothing Parameter, Sib. Zh. Ind. Mat., 2015, vol. 18, no. 2(62), pp. 63–73.
Ivanova, E.D., Acceleration of Convergence of Algorithm for Selecting a Smoothing Parameter by the Method of Asymptotic Estimates, Final qualification master’s work, Novosibirsk State University, 2011.
Rozhenko, A.I., Abstraktnaya teoriya splainov (Abstract Theory of Splines), Novosibirsk: NSU, 1999.
Grubbs’ Test for Outliers; https://en.wikipedia.org/wiki/Grubbs’_test_for_outliers.
Netflix Prize; https://en.wikipedia.org/wiki/Netflix_Prize.
Dubrule, O., Geostatistics for Seismic Data Integration in Earth Models, Tulsa: Society of Exploration Geophysicists and European Association of Geoscientists and Engineers, 2003.
Micchelli, C.A., Interpolation of Scattered Data: Distance Matrices and Conditionally Positive Definite Functions, Constr. Approx., 1986, vol. 2, pp. 11–22.
Duchon, J., Fonctions-Spline à Ènergie Invariante par Rotation, Preprint/RR; 27, Grenoble, 1976.
Ignatov, M.I. and Pevnyi, A.B., Natural’nye splainy mnogikh peremennykh (Multivariate Natural Splines), Leningrad: Nauka, 1991.
Volkov, Yu.S. and Miroshnichenko, V.L., The Construction of a Mathematical Model of Universal Characteristics of a Radial-Axial Turbine, Sib. Zh. Ind. Mat., 1998, vol. 1, no. 1, pp. 77–88.
Bogdanov, V.V., Karsten, W.V., Miroshnichenko, V.L., and Volkov, Yu.S., Application of Splines for Determining the Velocity Characteristic of a Medium from a Vertical Seismic Survey, Central European J.Math., 2013, vol. 11, no. 4, pp. 779–786.
Mitáš, L. and Mitášová, H., General Variational Approach to the Interpolation Problem, Comput. Math. Appl., 1988, vol. 16, no. 12, pp. 983–992.
Mitášová, H. and Mitáš, L., Interpolation byRegularized Splineswith Tension: I. Theory and Implementation, Math. Geol., 1993, vol. 25, iss. 6, pp. 641–655.
Rozhenko, A.I. and Shaidorov, T.S., On the Construction of Splines by the Reproducing Kernel Method, Sib. Zh. Vych. Mat., 2013, vol. 16, no. 4, pp. 365–376.
Rozhenko, A.I., On a New Family of Conditionally Positive Definite Radial Basis Functions, Tr. IMM UrO RAN, 2013, vol. 19, no. 2, pp. 256–266.
Rozhenko, A.I., New Families of Radial Basis Functions, in Constructive Theory of Functions, Ivanov, K., Nikolov, G., and Uluchev, R., Eds., Marin Drinov Academic Publishing House, 2014, pp. 217–233; http://www.math.bas.bg/mathmod/Proceedings_CTF/CTF-2013/files_CTF-2013/17-Rozhenko.pdf.
Spravochnik po spetsial’nym funktsiyam s formulami, grafikami i matematicheskimi tablitsami (Handbook ofMathematical Functions with Formulas, Graphs, and Mathematical Tables), Abramowitz,M. and Stegun, I.A., Eds., New York: Dover Publications, 1972.
Matérn, B., Spatial Variation, 2nd ed., Berlin: Springer, 1986.
Duchon, J., Spline Minimizing Rotation-Invariant Seminorms in Sobolev Spaces, in Constructive Theory of Functions of Several Variables, Berlin: Springer, 1977, pp. 85–100.
Principal Component Analysis; https://en.wikipedia.org/wiki/Principal_component_analysis.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.I. Rozhenko, 2018, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2018, Vol. 21, No. 3, pp. 273–290.
Rights and permissions
About this article
Cite this article
Rozhenko, A.I. Comparison of Radial Basis Functions. Numer. Analys. Appl. 11, 220–235 (2018). https://doi.org/10.1134/S1995423918030047
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1995423918030047