Abstract
In this paper it is shown by a comparison with reliable experimental data in a wide range of pressures and temperatures that the Redlich–Kwong equation of state fits well the distinctive characteristics of the compressibility coefficient, the throttling factor, and the reduced difference of specific isobaric and isochoric heat capacities. It is found that this equation corresponds to the inequalities required to ensure hyperbolicity of the set of equations of real gas flows in pipelines.
This is a preview of subscription content,
to check access.References
Shashi Menon, E., Gas Pipeline Hydraulic, New York: Taylor and Francis Group, CRS Press, 2005.
Bobrovsky, S.A., Shcherbakov, S.G., and Yakovlev, E.I., Truboprovodnyi transport gaza (Pipeline Transfer of Gas), Moscow: Nauka, 1976.
Lurie, M.V., Matematicheskoe modelirovanie protsessov truboprovodnogo transporta nefti, nefteproduktov i gaza (Mathematical Modeling of Processes of Pipeline Transportation of Oil, Oil Products, and Gas), Moscow: Publ. House of Gubkin Russian State University of Oil and Gas, 2003.
Charny, I.A., Osnovy gazovoi dinamiki (Fundamentals of Gas Dynamics), Moscow: Gostoptekhizdat, 1961.
Vasiliev, O.F. and Voevodin, A.F., On Gas-Thermodynamic Calculation of Flows in Simple and Complex Shaped Pipelines (Problem Statement), Izv. SO AN SSSR. Ser. Techn. Sci., 1968, no. 13, pp. 53–62.
Vasiliev, O.F., Bondarev, E.A., Voevodin, A.F., and Kanibolotsky, M.A., Neizotermicheskoe techenie gaza v trubakh (Nonisothermal Gas Flow in Pipelines), Novosibirsk: Nauka, 1978.
Bondarev, E.A., Vasiliev, V.I., Voevodin, A.F., et al., Termogidrodinamika sistem dobychi i transporta gaza (Thermohydrodynamics of Gas Production and Transport Systems), Novosibirsk: Nauka, 1988.
Bondarev, E.A., Voevodin, A.F., and Nikiforovskaya, V.S., Metody identifikatsii matematicheskikh modelei gidravliki (Identification Methods of Mathematical Models of Hydraulics), Yakutsk: Publ. House of North-Eastern Federal University, 2014.
Charny, I.A., Neustanovivshiesya dvizheniya real’noi zhidkosti v trubakh (Unsteady Motion of a Real Fluid in Pipes), Moscow: Nedra, 1975.
Voevodin, A.F. and Shugrin, S.M., Metody resheniya odnomernykh evolyutsionnykh sistem (Methods for One-Dimensional Time-Dependent Systems), Novosibirsk: Nauka, 1993.
Vukalovich, M.P. and Novikov, I.I., Uravnenie sostoyaniya real’nogo gaza (Equations of State of Real Gases), Moscow–Leningrad: Gosenergoizdat, 1948.
Vulis, L.A., Termodinamika gazovykh potokov (Thermodynamics of Gas Flows), Moscow–Leningrad: Gosenergoizdat, 1950.
Godunov, S.K., Thermodynamics of Gases and Differential Equations, Uspekhi Mat. Nauk, 1959, vol. 14, no. 5(89), pp. 97–116.
Rozhdestvensky, B.L. and Yanenko, N.N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike (Systems of Quasilinear Equations and Their Applications to Gas Dynamics), Moscow: Nauka, 1988.
Reid, R., Prausnitz, J., and Sherwood, T., Svoistva gazov i zhidkostei. Spravochnoe posobie (The Properties of Gases and Liquids. Reference Book), Leningrad: Khimiya, 1982.
Brusilovsky, A.I., Fazovye prevrashcheniya pri razrabotke mestorozhdenii nefti i gaza (Phase Transitions in the Development of Oil and Gas Deposits), Moscow: Graal, 2002.
Sloan, E.D. and Koh, C.A., Clathrate Hydrates of Natural Gases, 3d ed., New York: Taylor and Francis Group, CRS Press, 2008.
NIST Chemistry WebBook; http://webbook.nist.gov/chemistry.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © E.A. Bondarev, A.F. Voevodin, K.K. Argunova, I.I. Rozhin, 2017, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2017, Vol. 20, No. 3, pp. 239–249.
Rights and permissions
About this article
Cite this article
Bondarev, E.A., Voevodin, A.F., Argunova, K.K. et al. Choosing an equation of state in mathematical models of pipeline transportation of natural gases. Numer. Analys. Appl. 10, 198–206 (2017). https://doi.org/10.1134/S1995423917030028
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1995423917030028