Skip to main content
Log in

Choosing an equation of state in mathematical models of pipeline transportation of natural gases

Numerical Analysis and Applications Aims and scope Submit manuscript

Cite this article

Abstract

In this paper it is shown by a comparison with reliable experimental data in a wide range of pressures and temperatures that the Redlich–Kwong equation of state fits well the distinctive characteristics of the compressibility coefficient, the throttling factor, and the reduced difference of specific isobaric and isochoric heat capacities. It is found that this equation corresponds to the inequalities required to ensure hyperbolicity of the set of equations of real gas flows in pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Shashi Menon, E., Gas Pipeline Hydraulic, New York: Taylor and Francis Group, CRS Press, 2005.

    Book  Google Scholar 

  2. Bobrovsky, S.A., Shcherbakov, S.G., and Yakovlev, E.I., Truboprovodnyi transport gaza (Pipeline Transfer of Gas), Moscow: Nauka, 1976.

    Google Scholar 

  3. Lurie, M.V., Matematicheskoe modelirovanie protsessov truboprovodnogo transporta nefti, nefteproduktov i gaza (Mathematical Modeling of Processes of Pipeline Transportation of Oil, Oil Products, and Gas), Moscow: Publ. House of Gubkin Russian State University of Oil and Gas, 2003.

    Google Scholar 

  4. Charny, I.A., Osnovy gazovoi dinamiki (Fundamentals of Gas Dynamics), Moscow: Gostoptekhizdat, 1961.

    Google Scholar 

  5. Vasiliev, O.F. and Voevodin, A.F., On Gas-Thermodynamic Calculation of Flows in Simple and Complex Shaped Pipelines (Problem Statement), Izv. SO AN SSSR. Ser. Techn. Sci., 1968, no. 13, pp. 53–62.

    Google Scholar 

  6. Vasiliev, O.F., Bondarev, E.A., Voevodin, A.F., and Kanibolotsky, M.A., Neizotermicheskoe techenie gaza v trubakh (Nonisothermal Gas Flow in Pipelines), Novosibirsk: Nauka, 1978.

    Google Scholar 

  7. Bondarev, E.A., Vasiliev, V.I., Voevodin, A.F., et al., Termogidrodinamika sistem dobychi i transporta gaza (Thermohydrodynamics of Gas Production and Transport Systems), Novosibirsk: Nauka, 1988.

    MATH  Google Scholar 

  8. Bondarev, E.A., Voevodin, A.F., and Nikiforovskaya, V.S., Metody identifikatsii matematicheskikh modelei gidravliki (Identification Methods of Mathematical Models of Hydraulics), Yakutsk: Publ. House of North-Eastern Federal University, 2014.

    Google Scholar 

  9. Charny, I.A., Neustanovivshiesya dvizheniya real’noi zhidkosti v trubakh (Unsteady Motion of a Real Fluid in Pipes), Moscow: Nedra, 1975.

    Google Scholar 

  10. Voevodin, A.F. and Shugrin, S.M., Metody resheniya odnomernykh evolyutsionnykh sistem (Methods for One-Dimensional Time-Dependent Systems), Novosibirsk: Nauka, 1993.

    Google Scholar 

  11. Vukalovich, M.P. and Novikov, I.I., Uravnenie sostoyaniya real’nogo gaza (Equations of State of Real Gases), Moscow–Leningrad: Gosenergoizdat, 1948.

    Google Scholar 

  12. Vulis, L.A., Termodinamika gazovykh potokov (Thermodynamics of Gas Flows), Moscow–Leningrad: Gosenergoizdat, 1950.

    Google Scholar 

  13. Godunov, S.K., Thermodynamics of Gases and Differential Equations, Uspekhi Mat. Nauk, 1959, vol. 14, no. 5(89), pp. 97–116.

    Google Scholar 

  14. Rozhdestvensky, B.L. and Yanenko, N.N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike (Systems of Quasilinear Equations and Their Applications to Gas Dynamics), Moscow: Nauka, 1988.

    Google Scholar 

  15. Reid, R., Prausnitz, J., and Sherwood, T., Svoistva gazov i zhidkostei. Spravochnoe posobie (The Properties of Gases and Liquids. Reference Book), Leningrad: Khimiya, 1982.

    Google Scholar 

  16. Brusilovsky, A.I., Fazovye prevrashcheniya pri razrabotke mestorozhdenii nefti i gaza (Phase Transitions in the Development of Oil and Gas Deposits), Moscow: Graal, 2002.

    Google Scholar 

  17. Sloan, E.D. and Koh, C.A., Clathrate Hydrates of Natural Gases, 3d ed., New York: Taylor and Francis Group, CRS Press, 2008.

    Google Scholar 

  18. NIST Chemistry WebBook; http://webbook.nist.gov/chemistry.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Bondarev.

Additional information

Original Russian Text © E.A. Bondarev, A.F. Voevodin, K.K. Argunova, I.I. Rozhin, 2017, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2017, Vol. 20, No. 3, pp. 239–249.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarev, E.A., Voevodin, A.F., Argunova, K.K. et al. Choosing an equation of state in mathematical models of pipeline transportation of natural gases. Numer. Analys. Appl. 10, 198–206 (2017). https://doi.org/10.1134/S1995423917030028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423917030028

Keywords

Navigation