Skip to main content
Log in

On the uniform convergence of parabolic spline interpolation on the class of functions with large gradients in the boundary layer

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

The problem of parabolic spline interpolation, according to Subbotin, of functions with large gradients in the boundary layer is considered. In the case of a uniform grid it is proved and in the case of the Shishkin mesh it is experimentally shown that with a parabolic spline interpolation of functions with large gradients in the exponential boundary layer, the error can unrestrictedly increase when the small parameter tends to zero and the number of grid nodes is fixed. An approximation process using parabolic splines with defect 1 is proposed; the error estimates are found to be uniform in the small parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Il’in, A.M., Difference Scheme for a Differential Equation with a Small Parameter at the Highest Derivative, Mat. Zam., 1969, vol. 6, no. 2, pp. 237–248.

    Google Scholar 

  2. Bahvalov, N.S., On Optimization of Solving Boundary Value Problems in the Presence of Boundary Layer, Zh. Vych. Mat. Mat. Fis., 1969, vol. 9, no. 4, pp. 841–890.

    MathSciNet  Google Scholar 

  3. Shishkin, G.I., Setochnye approksimatsii singulyarno vozmushchennykh ellipticheskikh i parabolicheskikh uravnenii (Mesh Approximations of Singularly Perturbed Elliptic and Parabolic Equations), Yekaterinburg: UB RAS, 1992.

    Google Scholar 

  4. Shishkin, G.I., Approximation of Solutions to Singularly Perturbed Boundary Value Problems with Parabolic Boundary Layer, Zh. Vych. Mat. Mat. Fis., 1989, vol. 29, no. 7, pp. 963–977.

    MathSciNet  MATH  Google Scholar 

  5. Ahlberg, J.H., Nilson, E.N., and Walsh, J.L., The Theory of Splines and Their Applications, New York: Academic Press, 1967.

    MATH  Google Scholar 

  6. De Boor, C., Prakticheskoe rukovodstvo po splainam (A Practical Guide to Splines), Moscow: Radio i Svyaz’, 1985.

    Google Scholar 

  7. Stechkin, S.B. and Subbotin, Yu.N., Splainy v vychislitel’noi matematike (Splines in Computational Mathematics), Moscow: Nauka, 1976.

    Google Scholar 

  8. Zav’yalov, Yu.S., Kvasov, B.I., and Miroshnichenko, V.L., Metody splain-funktsii (Methods of Spline Functions), Moscow: Nauka, 1980.

    MATH  Google Scholar 

  9. Zadorin, A.I., Method of Interpolation for a Boundary Layer Problem, Sib. Zh. Vych. Mat., 2007, vol. 10, no. 3, pp. 267–275.

    MATH  Google Scholar 

  10. Zadorin, A.I., Lagrange Interpolation and Newton–Cotes Formulas for Functions with a Boundary Layer Component on Piecewise Uniform Grids, Sib. Zh. Vych. Mat., 2015, vol. 18, no. 3, pp. 289–303.

    MATH  Google Scholar 

  11. Zadorin, A.I., Spline Interpolation of Functions with a Boundary Layer Component, Int. J. Numer. An.Mod., Series B, 2011, vol. 2, nos. 2/3, pp. 262–279.

    MathSciNet  MATH  Google Scholar 

  12. Volkov, Yu.S., Interpolation with Even Degree Splines According to Subbotin and Marsden, Ukr. Mat. Zh., 2014, vol. 66, no. 7, pp. 891–908.

    Article  MATH  Google Scholar 

  13. Miller, J.J.H., O’Riordan, E., and Shishkin, G.I., Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions (rev. ed.), Singapore:World Scientific, 2012.

    Book  MATH  Google Scholar 

  14. Linss, T., The Necessity of Shishkin Decompositions, Appl.Math. Lett., 2001, vol. 14, pp. 891–896.

    Article  MathSciNet  MATH  Google Scholar 

  15. Volkov, Yu.S., On Finding a Complete Interpolation Spline through B-Splines, Sib. El. Mat. Izv., 2008, vol. 5, pp. 334–338.

    MATH  Google Scholar 

  16. Volkov, Yu.S., Obtaining a Banded System of Equations in Complete Spline Interpolation Problem via BSplines Basis, Central Eur. J. Math., 2012, vol. 10, no. 1, pp. 352–356.

    Article  MathSciNet  MATH  Google Scholar 

  17. Blatov, I.A. and Kitaeva, E.V., Convergence of the BahvalovGridAdaptationMethod for Singularly Perturbed Boundary Value Problems, Sib. Zh. Vych. Mat., 2016, vol. 19, no. 1, pp. 43–55.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Blatov.

Additional information

Original Russian Text © I.A. Blatov, A.I. Zadorin, E.V. Kitaeva, 2017, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2017, Vol. 20, No. 2, pp. 131–144.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blatov, I.A., Zadorin, A.I. & Kitaeva, E.V. On the uniform convergence of parabolic spline interpolation on the class of functions with large gradients in the boundary layer. Numer. Analys. Appl. 10, 108–119 (2017). https://doi.org/10.1134/S1995423917020021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423917020021

Keywords

Navigation