Numerical Analysis and Applications

, Volume 9, Issue 4, pp 326–334 | Cite as

Interpolation-type quadrature formulas for hypersingular integrals in the interval of integration



A hypersingular integral on the interval of integration with a weight function is considered. Spectral ratios for hypersingular integrals on the interval [−1, 1] are proved. Interpolationtype quadrature formulas for certain integrals with weight functions are constructed. The error is estimated.


hypersingular integral quadrature formula error estimate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boikov, I.V., Priblizhennye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov. Ch. 2. Gipersingulyarnye integraly (Approximate Methods for Calculating Singular and Hypersingular Integrals, part 2: Hypersingular Integrals), Penza: Izd. Penzenskogo Gosudarstvennogo Universiteta, 2009.Google Scholar
  2. 2.
    Lifanov, I.K., Metod singulyarnykh integral’nykh uravnenii i chislennyi eksperiment (Method of Singular Integral Equations and Numerical Experiment), Moscow: Yanus, 1995.Google Scholar
  3. 3.
    Vainikko, G.M., Lifanov, I.K., and Poltavskii, L.N., Chislennyemetody v gipersingulyarnykh integral’nykh uravneniyakh i ikh prilozheniya (Numerical Methods in Hypersingular Integral Equations and Their Applications), Moscow: Yanus-K, 2001.Google Scholar
  4. 4.
    Pashkovskii, S., Vychislitel’nye primeneniya mnogochlenov i ryadov Chebysheva (Computational Applications of the Chebyshev Polynomials and Series), Moscow: Nauka, 1983.Google Scholar
  5. 5.
    Krylov, V.I., Priblizhennoe vychislenie integralov (Approximate Calculation of Integrals), Moscow: Nauka, 1967.Google Scholar
  6. 6.
    Khubezhty, Sh.S. and Plieva, L.Yu., On Quadrature Formulas for Hypersingular Integrals on the Interval of Integration, in Analiticheskie i chislennyemetodymodelirovaniya estestvenno-nauchnykh i social’nykh problem (Analytical and Numerical Methods for Modeling Natural Science and Social Problems), Proc. IX Int. Conf., Penza: PGU, 2014, pp. 54–58.Google Scholar
  7. 7.
    Plieva, L.Yu., On Approximate Calculation of Hypersingular Integrals on the Interval of Integration, Tr. Mol. Uch. Vladikavkazskogo Nauch. Tsentra RAN, 2015, vol. 15, no. 1, pp. 40–46.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.South Mathematical Institute, Department of the Vladikavkaz Scientific Center of the Russian Academy of SciencesVladikavkaz, North Ossetia-Alania RepublicRussia
  2. 2.Khetagurov North Ossetia State UniversityVladikavkaz, North Ossetia-Alania RepublicRussia

Personalised recommendations