Skip to main content
Log in

Influence of Carbon Nanotubes on the Radiotechnical Characteristics of Radiation-Absorbing Materials

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

The paper presents the study of polymer compositions based on ABS plastic and ED-22 epoxy resin, which contained ferromagnetic iron powders and modified carbon nanotubes. We show the influence of Taunit MD carbon nanotubes, introduced into the composition of radio-absorbing materials in addition to magnetic powders, on their radiotechnical characteristics. The dependences of the radiotechnical characteristics of polymer compositions on the concentration of functional fillers—iron powders and carbon nanotubes—have been determined. The effect of separation of functional fillers into separate phases in a two-matrix composite material is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. E. N. Kablov, “Formation of domestic space materials science,” Vestn. Ross. Fonda Fund. Issled., No. 3, 97–105 (2017).

    Google Scholar 

  2. E. N. Kablov, “Materials and chemical technologies for aviation equipment,” Vestn. Ross. Akad. Nauk 82, 520–530 (2012).

    CAS  Google Scholar 

  3. E. N. Fominich and A. M. Pavlenok, “Current state and development problems of autonomous power supply systems for special facilities,” Voennyi Inzhener, No. 1, 21–30 (2020).

    Google Scholar 

  4. V. D. Zyuzin, S. I. Platonov, M. S. Ladarev, A. G. Ostroumov, and N. G. Trushin, “Effective measures to ensure electromagnetic compatibility of radio relay and optical communication equipment,” Innovatsii i Investitsii, No. 4, 183–187 (2020).

    Google Scholar 

  5. V. A. Bannyi and V. A. Ignatenko, “The use of polymeric radio-absorbing materials in solving the problem of electromagnetic safety,” Problemy Zdorovya i Ekologii, No. 3, 9–13 (2016).

    Google Scholar 

  6. L. N. Ivanova, I. A. Borovik, D. D. Kokhnyuk, A. A. Politiko, V. A. Chistyaev, and V. N. Semenenko, “Radar absorbing coating with high mechanical strength for antenna platform,” Elektronika i Mikroelektronika SVCh, No. 1, 55—62 (2017).

    Google Scholar 

  7. K. G. Gareev, A. O. Gasnikov, M. I. Ershov, K. K. Kondrashov, V. V. Luchini, A. A. Petrov, and O. A. Testov, “Ensuring electromagnetic safety of biotechnosphere objects,” Biotekhnosfera, 28–53 (2017).

  8. V. B. Ivanov, S. B. Bibikov, I. D. Kapaeva, and E. V. Solin, “Radio-absorbing textile materials,” in Technologies and Materials for Experimental Conditions (Laser Technologies, Sources of Current, and Materials) (2017), pp. 221–226.

    Google Scholar 

  9. I. D. Kraev, O. V. Popkov, E. M. Shuldeshov, A. E. Sorokin, and G. Yu. Yurkov, “Prospects for the use of organosilicon elastomers in the creation of modern polymeric materials and coatings for various purposes,” Trudy VIAM No. 12, 5 (2017). https://doi.org/10.18577/2307-6046-2017-0-12-5-5

  10. A. A. Pykhtin, A. E. Sorokin, I. D. Kraev, and V. A. Voronov, “The choice of the composition of the thermosetting binder modified with active nanoparticles of LSNO ceramics for impregnation of thermoplastic templates obtained by FDM printing,” Trudy VIAM, No. 9, 15–26 (2020). https://doi.org/10.18577/2307-6046-2020-0-9-15-26

  11. RF Patent No. 2502767 (27 December 2013).

  12. K. L. Devin, A. S. Agafonova, and I. I. Sokolov, “Prospects for the use of radio-absorbing materials to ensure electromagnetic compatibility of on-board radio-electronic equipment,” VIAM, No. 8, 1–7 (2020). https://doi.org/10.18577/2307-6046-2020-0-8-94-100

    Article  Google Scholar 

  13. E. P. Elsukov, K. N. Rozanov, S. F. Lomaeva, A. V. Osipov, D. A. Petrov, S. N. Starostenko, A. S. Shuravin, A. L. Ulyanov, A. A. Chulkina, and D. V. Surnin, “Influence of shape and chemical and phase compositions of iron-containing particles on microwave performance of composites with an insulating matrix,” Tech. Phys. 54, 569–574 (2009).

    Article  CAS  Google Scholar 

  14. K. N. Rozanov, Doctoral Dissertation in Mathematics and Physics (Moscow State Univ., Moscow, 2018). https://www.dissercat.com.

    Google Scholar 

  15. S. V. Kondrashov, K. A. Shashkeev, G. N. Petrova, and I. V. Mekalina, “Polymer composite materials for structural purposes with functional properties,” Aviats. Mater. Tekhnol., 405–419 (2017). https://doi.org/10.18577/2071-9140-2017-0-S-405-419

  16. L. N. Ivanova, I. A. Borovik, D. D. Kokhnyuk, A. A. Politiko, V. A. Chistyaev, and V. N. Semenenko, “Radar absorbing coating with high mechanical strength for antenna platform,” Elektronika i Mikroelektronika SVCh, No. 1, 55–62 (2017).

    Google Scholar 

  17. E. N. Kablov, “Innovative developments of FSUE “VIAM” for the implementation of the “Strategic directions for the development of materials and technologies for their processing for the period up to 2030”, Aviats. Mater. Tekhnol., 3–33 (2015). https://doi.org/10.18577/2071-9140-2015-0-1-3-33

  18. S. F. Lomaeva, A. N. Maratkanova, D. A. Petrov, K. N. Rozanov, and S. N. Starostenko, “Microwave properties of FeCo–CuO2 systems obtained by high-energy milling,” Materialoved., No. 11, 22–27 (2016).

    Google Scholar 

  19. S. F. Lomaeva, A. V. Syugaev, A. N. Maratkanova, K. N. Rozanov, D. A. Petrov, A. L. Ulyanov, and O. R. Timoshenkova, “Influence of the grinding medium (paraffin, polyethylene, polystyrene) on the phase composition, surface structure and microwave properties of Fe powders,” Khim. Fiz. i Mezoskopiya 16 (2014).

  20. A. A. Shakov, D. A. Petrov, K. N. Rozanov, A. V. Syugaev, and S. F. Lomaeva, “Synthesis of fillers for microwave composites by mechanical activation of iron with polydines and surfactants,” Fizikokhimiya Poverkhnosti i Zashchita Mater. 53, 85–90 (2017).

    Google Scholar 

  21. G. Yu. Yurkov, S. V. Kondrashov, and I. D. Kraev, “Nanocomposites based on high-density polyethylene and cobalt nanoparticles: Synthesis, structure, and properties,” Aviats. Mater. Tekhnol., 29–33 (2014). https://doi.org/10.18577/2071-9140-2014-0-S2-29-33

  22. O. S. Tarasova, A. V. Sitnikov, Yu. E. Kalinin, S. N. Starostenko, and A. B. Granovskii, “High-frequency magnetic permeability of single- and multilayered (Co41Fe39B20)x(SiO2)100 – x nanocomposites,” Fiz. Tverd. Tela 58, 2453–2456 (2016).

    CAS  Google Scholar 

  23. A. E. Sorokin, A. A. Pykhtin, S. A. Larionov, A. A. Belyaev, S. L. Lonskii, A. A. Kobzev, A. N. Blokhin, M. V. Lobanov, and S. V. Kondrashov, “Structure and properties of CNT modified filaments based on ABS plastic,” Vse Mater. Entsiklopedicheskii Spravochnik, No. 4, 8–17 (2020). https://doi.org/10.31044/1994-6260-2020-0-4-8-17

    Article  CAS  Google Scholar 

  24. D. Banerjee, T. Nguyen, and T-J. Chuang, “Mechanical properties of single-walled carbon nanotube reinforced polymer composites with varied interphase’s modulus and thickness: A finite element analysis study,” Comput. Mater. Sci. 114, 209–218 (2016).

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the framework of the integrated scientific directive 15.3 “Materials and coatings for protection against electromagnetic radiation, shock, vibration, acoustic and electrical influences” (“Strategic directives for the development of materials and technologies for their recycling for the period up to 2030”) and supported by the Russian Foundation for Basic Research, grant no. 18-03-00371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Sorokin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Trubitsyna

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, A.E., Petrova, A.P., Sagomonova, V.A. et al. Influence of Carbon Nanotubes on the Radiotechnical Characteristics of Radiation-Absorbing Materials. Polym. Sci. Ser. D 16, 124–130 (2023). https://doi.org/10.1134/S1995421223010306

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421223010306

Keywords:

Navigation