Skip to main content
Log in

Review of Methods for Creating Orderly Reinforced Composites Based on Thermoplastic Polymers

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

A review of technological methods that make it possible to create polymer-composite materials based on a thermoplastic matrix has been given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. V. A. Nelyub, “Technologies of metallization of carbon fabric and the properties of the related carbon fiber reinforced plastics,” Russ. Metall. (Metally) 2018, 1199–1201 (2018).

    Article  Google Scholar 

  2. A. Bocharov, V. Vigovskiy, and V. Nelyub, “Metal coating of carbon fabric and properties of the carbon-fiber-reinforced plastic,” Mater. Today: Proc. 11, 107–111 (2019).

    CAS  Google Scholar 

  3. V. Nelyub and V. Tarasov, “Ion-beam processing of metallized carbon fiber-reinforced plastics,” Mater. Manuf. Proc. 35, 172–178 (2020).

    Article  CAS  Google Scholar 

  4. V. A. Nelyub and A. S. Borodulin, “Properties of epoxy materials used for production of glass-reinforced plastics by the winding method,” Polym. Sci., Ser. D 11, 147–153 (2018).

    CAS  Google Scholar 

  5. V. A. Nelyub, “Technologies of production of components of electric transmission line supports from epoxy binders by the winding method,” Polym. Sci., Ser. D 6, 44–47 (2013).

    CAS  Google Scholar 

  6. C. Yanyan, V. A. Nelyub, and G. V. Malysheva, “An investigation of the kinetics of the heating process for parts made of carbon fiber in the process of curing,” Polym. Sci., Ser. D 12, 296–299 (2019).

    Google Scholar 

  7. A. S. Borodulin, “Polyester resins for production of goods from polymer composite materials by pressing methods,” Polym. Sci., Ser. D 6, 269–270 (2013).

    CAS  Google Scholar 

  8. A. S. Borodulin, “Plasticizers for epoxy adhesives and binders,” Polym. Sci., Ser. D 6, 59–62 (2013).

    CAS  Google Scholar 

  9. A. S. Borodulin and A. N. Kalinnikov, “Super engineering polyesters: Synthesis and performance characteristics,” IOP Conf. Ser.: Mater. Sci. Eng., 709, 022038 (2020).

  10. M. V. Stoyanova, A. D. Novikov, and A. S. Borodulin, “Evaluation construction made of polymer composite materials by molding using reusable flexible punches production profitability,” IOP Conf. Ser.: Mater. Sci. Eng., 934, 012068 (2020).

  11. M. V. Stoyanova and A. D. Novikov, “Stands with a reusable diaphragm for the production of composites materials used in engineering industrial companies,” J. Phys.: Conf. Ser. 1990, 012026 (2021).

    CAS  Google Scholar 

  12. A. D. Novikov, M. V. Stoyanova, and A. S. Borodulin, “Environmental effectiveness assessment of the technology for molding products made of polymer composite materials using a reusable flexible punch,” IOP Conf. Ser.: Mater. Sci. Eng., 934, 012069 (2020).

  13. M. Connor et al., “A model for the consolidation of aligned thermoplastic powder impregnated composites,” J. Thermoplast. Compos. Mater. 8, 138–162 (1995).

    Article  CAS  Google Scholar 

  14. A. K. Shaov, A. M. Kharaev, A. S. Borodulin, V. Nelyub, A. N. Kalinnikov, Z. S. Khasbulatova, B. R. Chamalovna, and T. A. Borukaev, “Polyethylene modification and stabilisation with lowmolecular weight polyetheretherketones,” Int. J. Pharm. Res. 12, 2316–2321 (2020).

    Google Scholar 

  15. A. S. Borodulin, V. Nelyub, A. K. Shaov, A. N. Kalinnikov, A. M. Kharaev, Z. S. Khasbulatova, R. C. Bazheva, and T. A. Borukaev, “Study of low-molecular weight polyether ketones in relation to high-density polyethylene,” Int. J. Pharm. Res. 12, 2323–2328 (2020).

    Google Scholar 

  16. A. M. Kharaev, R. C. Bazheva, M. B. Begieva, V. A. Nelyub, and A. S. Borodulin, “Polyethersulfones with improved thermophysical properties,” Polym. Sci., Ser. D 12, 24–28 (2019).

    CAS  Google Scholar 

  17. A. Borodulin, A. Kalinnikov, A. Kharaev, and S. Shcherbin, “Aromatic polysulfone to create polymer materials with high resistance to frost,” IOP Conf. Ser.: Earth Environ. Sci. 302, 012062 (2019).

  18. A. N. Kalinnikov, A. S. Borodulin, A. M. Kharaev, R. C. Bazheva, S. B. Balkarova, and R. A. Kharaeva, “Polyether-ketones based on 1,1-dichloro-2,2-di(3,5- dibromo-4-hydroxyphenyl) ethylene,” Key Eng. Mater. 816, 302–306 (2019).

    Article  Google Scholar 

  19. E. S. Zelenskii, A. M. Kuperman, Yu. A. Gorbatkina, V. G. Ivanova-Mumzhieva, and A. A. Berlin. “Reinforced plastics–modern construction materials,” Ross. Khim. Zh. 45, 56–74 (2001).

    CAS  Google Scholar 

  20. D. M. Bigg et al., “High performance thermoplastic matrix composites,” J. Thermoplast. Compos. Mater. 1, 146–160 (1988).

    Article  Google Scholar 

  21. S. R. Iyer and L. T. Drzal, “Manufacture of powder-impregnated thermoplastic composites,” J. Thermoplast. Compos. Mater. 3, 325–355 (1990).

    Article  Google Scholar 

  22. G. W. Ehrenstein, Faserverbund-Kunststoffe: Werkstoffe (Verarbeitung, Eigenschaften, Munchen, 2006).

  23. U. K. Vaidya and K. K. Chawla, “Processing of fibre reinforced thermoplastic composites,” Int. Mater. Rev. 53, 185–218 (2008).

    Article  CAS  Google Scholar 

  24. E. O. Platonova, E. Vlasov, A. A. Pavlov, A. Kireynov, V. A. Nelyub, and A. V. Polezhaev, “Self-healing polyurethane based on a difuranic monomer from biorenewable source,” J. Appl. Polym. Sci. 136, 47869 (2019).

    Article  Google Scholar 

  25. G. N. Petrova and E. Ya. Beider, “Molded thermoplastic materials for aerospace applications,” Ross. Khim. Zh. 1, 41–45 (2010).

    Google Scholar 

  26. V. E. Bakhareva, I. V. Nikitina, and A. S. Sargsyan, “Heat-resistant glass-reinforced plastics with high strength and dielectric properties for mechanical engineering and instrument making,” Nasosy. Turbiny. Sistemy, No. 2, 13–20 (2016).

    Google Scholar 

  27. “The Global Thermoplastic Prepreg Market: Highlights,” in Stratview Research Report Code SRAM178 (2018), pp. 284

  28. R. Dyksterhouse and J. Dyksterhouse, US Patent No. 4894105 (1990).

  29. A. M. Vodermayer, J. C. Kaerger, and G. Hinrichsen, “Manufacture of high performance fibre-reinforced thermoplastics by aqueous powder impregnation,” Compos. Manuf. 4, 123–132 (1993).

    Article  CAS  Google Scholar 

  30. J. E. O’Connor, US Patent No. 4680224 (1987).

  31. J. Muzzy et al., “Electrostatic prepregging of thermoplastic matrices,” SAMPE J. 25, 15–21 (1989).

    CAS  Google Scholar 

  32. D. J. Lind and V. J. Coffey, UK Patent No. 1485886 (1977).

  33. L. A. Carlsson, “Thermoplastic composite materials,” J. Compos. Mater. 7 (1991).

  34. N. Svensson, R. Shishoo, and M. Gilchrist, “Manufacturing of thermoplastic composites from commingled yarns-a review,” J. Thermoplast. Compos. Mater. 11, 22–56 (1998).

    Article  CAS  Google Scholar 

  35. S. R. Clemans, E. D. Western, and A. C. Handermann, “Thermoplastic hybrid yarns for high-performance composites,” Macromol. Mater. Eng. (Cleveland) 105, 27–30 (1988).

    Google Scholar 

  36. E. L. d’Hooghe and C. M. Edwards, “Thermoplastic composite technology; tougher than you think,” Adv. Mater. 12, 1865–1868 (2000).

    Article  Google Scholar 

  37. K. Van Rijswijk and H. E. N. Bersee, “Reactive processing of textile fiber-reinforced thermoplastic composites–an overview,” Compos. Part A: Appl. Sci. Manuf. 38, 666–681 (2007).

    Article  Google Scholar 

  38. G. N. Petrova et al., “Composite thermoplastic materials—methods of production and processing,” Vse Mater. Entsiklopedicheskii Spravochnik, No. 10, 10–17 (2013).

    Google Scholar 

  39. S. Iyer and L. T. Drzal, US Patent No. 5128199 (1992).

  40. N. Turton and J. McAinsh, US Patent No. 3785916 (1974).

  41. T. Hartness, “Thermoplastic powder technology for advanced compo-site systems,” J. Thermoplast. Compos. Mater. 1, 210–220 (1988).

    Article  Google Scholar 

  42. S. R. Iyer and L. T. Drzal, “Manufacture of powder-impregnated thermo-plastic composites,” J. Thermoplast. Compos. Mater. 3, 325–355 (1990).

    Article  Google Scholar 

  43. M. Rath, S. Kreuzberger, and G. Hinrichsen, “Manufacture of aramid fibre reinforced nylon-12 by dry powder impregnation process,” Compos. Part A: Appl. Sci. Manuf. 29, 933–938 (1998).

    Article  Google Scholar 

  44. S. Padaki and L. T. Drzal, “A consolidation model for polymer powder impregnated tapes,” J. Compos. Mater. 31, 2202–2227 (1997).

    Article  CAS  Google Scholar 

  45. S. Padaki and L. T. Drzal, “A simulation study on the effects of particle size on the consolidation of polymer powder impregnated tapes,” Compos. Part A: Appl. Sci. Manuf. 30, 325—337 (1990).

    Article  Google Scholar 

  46. T. G. Gutowski et al., “Resin flow/fiber deformation experiments,” SAMPE Quarterly (US) 17 (1986).

    Google Scholar 

  47. G. M. Wu and J. M. Schultz, “Processing and properties of solution impregnated carbon fiber reinforced polyethersulfone composites,” Polym. Compos. 21, 223–230 (2000).

    Article  CAS  Google Scholar 

  48. U. Vaidya, Composites for Automotive, Truck and Mass Transit: Materials, Design, Manufacturing (DEStech Publ., 2011).

  49. T. Hartness et al., “The characterization of low cost fiber reinforced thermoplastic composites produced by the drift(tm) process,” Compos. Part A: Appl. Sci. Manuf. 32, 1155–1160 (2001).

    Article  Google Scholar 

  50. A. Trende et al., “Modelling of heat transfer in thermoplastic composites manufacturing: Double-belt press lamination,” Compos. Part A: Appl. Sci. Manuf. 63, 2099–2110 (2003).

    Google Scholar 

  51. P. Mitschang, M. Blinzler, and A. Woginger, “Processing technologies for continuous fibre reinforced thermoplastics with novel polymer blends,” Compos. Sci. Technol. 63, 2099–2110 (2003).

    Article  CAS  Google Scholar 

  52. V. Shtenbek, D. Shultse, L. Kroll, S. Nendel, D. Nestler, and K. Tsopp, “Thermoplastic polyurethane composites based on continuous carbon fibers,” Polim. Mater., No. 2, 10–13 (2017).

    Google Scholar 

  53. A. B. Strong and B. Strong, Plastics: Materials and Processing (Pearson, 2000).

    Google Scholar 

  54. M. D. Wakeman et al., “Stamp forming of carbon fibre/PA12 composites a–comparison of a reactive impregnation process and a commingled yarn system,” Compos. Sci. Technol. 66, 19–35 (2006).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the world-class scientific and educational center Russian Arctic: New Materials, Technologies, and Research Methods under the contract “Development of new structural composite materials in solving the strategic problem of the integrated use of mineral resources and manmade waste enterprises of the Arctic zone.” The state registration no. of R&D is 121112500107-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Chukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chukov, N.A., Seleznev, V.A. & Tereshkov, A.G. Review of Methods for Creating Orderly Reinforced Composites Based on Thermoplastic Polymers. Polym. Sci. Ser. D 16, 188–192 (2023). https://doi.org/10.1134/S1995421223010082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421223010082

Keywords:

Navigation