Skip to main content
Log in

A Review of Modern Adhesive Materials Operating in a Wide Temperature Range. Epoxy Adhesives

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

This review considers advances in the field of epoxy adhesives that can work at elevated and negative temperatures. Methods for modifying epoxy adhesives and examples of adhesive materials for operation in a wide temperature range have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. L.-Kh. Li, “Adhesives Designed for Long-Term Use in Extreme Conditions,” in Adhesives and Adhesive Compounds, Ed. by V. L. Vakula and L. M. Pritykin (Mir, Moscow, 1988), pp. 81–91.

  2. K. Larson, “High temperature use limits of silicones,” www.researchgate. net/publication/334806305

  3. L.-Kh. Li, “Latest Advances in Adhesive and Sealant Development,” in Adhesives and Adhesive Compounds, Ed. by V. L. Vakula and L. M. Pritykin (Mir, Moscow, 1988)

  4. N. F. Lukina, A. P. Petrova, and E. V. Kotova, “Heat resistant adhesives for aerospace applications.” Trudy VIAM 03, 06 (2014).

  5. D. Driver, “Adhesive Bonding for Aerospace Applications,” in High Performance Materials in Aerospace, Ed. by H. M. Flower (Springer, Dordrecht, 1995). https://doi.org/10.1007/978-94-011-0685-6_11

  6. http://www.marketsandmarkets.com/Market-Reports/high-temperature-adhesives-market-244414430.html.

  7. “Thermal stability per MIL-STD-883J,” http://www.masterbond.com/certifications/mil-std-883j-thermal-stability.

  8. T. J. Collins, W. M. Congdon, S. S. Smeltzer, and K. S. Whitley, “High-temperature structures, adhesives, and advanced thermal protection materials for next-generation aeroshell design,” https://ntrs.nasa.gov/search.jsp?R=,200600025492019–08.

  9. A. P. Petrova, Heat Resistant Adhesives (Khimiya, Moscow, 1977) [in Russian].

    Google Scholar 

  10. Yu. A. Mikhailin, Heat-Resistant Polymers and Polymeric Materials (Professiya, St. Petersburg, 2006).

    Google Scholar 

  11. Space Engineering. Adhesive Bonding Handbook ECSS-E-HB-32-21A (2011).

  12. Handbook: Bonding in Mechanical Engineering, Ed. by G. V. Malysheva (Nauka i Tekhnologii, Moscow, 2005) [in Russian].

    Google Scholar 

  13. S. Gendriks and S. Khill, “Heat resistant Adhesives Used in the Aerospace Industry,” in Adhesives and Adhesive Compounds, Ed. by V. L. Vakula and L. M. Pritykin (Mir, Moscow, 1988), pp. 59–80.

  14. K. Tserpes, “Adhesive Bonding of Aircraft Structures,” in Revolutionizing Aircraft Materials and Processes, Ed. by S. Pantelakis and K. Tserpes (Springer, Cham, 2020).

    Google Scholar 

  15. Zhuo Long-hai, Kou Kai-chang, Wu Guang-lei, et al., “Research progress on high temperature resistance adhesives,” China Adhesives (2011).

    Google Scholar 

  16. A. Gardziella, L. A. Pilato, and A. Knop, Phenolic Resins. Chemistry, Applications, Standardization, Safety and Ecology (Springer, Berlin, 2000).

    Google Scholar 

  17. F. De Buyl, “Silicone sealants and structural adhesives,” Int. J. Adhes. Adhes 21, 411–422 (2001).

    Article  CAS  Google Scholar 

  18. D. M. Gerasimov, O. A. Eliseev, and D. N. Smirnov, “Modern trends in the development of silicone sealants and compounds abroad (review),” Novosti Materialoved. Nauka i Tekhnika, No. 4, 70–82 (2015).

    Google Scholar 

  19. E. A. S. Marques, F. M. Lucas Da Silva, et al., “Adhesive joints for low- and high-temperature use: An overview,” J. Adhes. 91, 556–585 (2015).

    Article  CAS  Google Scholar 

  20. M. A. Zharinov, A. P. Petrova, I. V. Babchuk, and K. R. Akhmadieva, “Thermally stable polyimide structural adhesives,” Polym. Sci., Ser. D 15, 143–149 (2022).

    CAS  Google Scholar 

  21. D. A. Aronovich, “Achievements in improving thermal properties of anaerobic adhesives. Review,” Polym. Sci., Ser. D 13, 414–418 (2020).

    CAS  Google Scholar 

  22. B. Burns. “Cyanoacrylates: Towards High Temperature Resistant Instant Adhesives. A Critical Review,” in Progress in Adhesion and Adhesives, Ch. 10, pp. 341–368 (2018).

  23. K. P. Subrahmanian, “High-temperature polymers and adhesives,” in Structural Adhesives. Topics in Applied Chemistry, Ed. by S. R. Hartshorn (Springer, Boston, MA, 1986). https://doi.org/10.1007/978-1-4684-7781-8_8

  24. A. Higgins, “Adhesive bonding of aircraft structures,” Int. J. Adhes. and Adhes 20, 367–376 (2000). https://doi.org/10.1016/s0143-7496(00)00006-3

    Article  CAS  Google Scholar 

  25. N. R. Paluvai, S. Mohanty, and S. K. Nayak, “Synthesis and modifications of epoxy resins and their composites: A review,” Polym. Plastics Technol. Eng. 53 (16), 1723–1758 (2014).

    Article  CAS  Google Scholar 

  26. Z. Wang, J. Jiang, et al., “Synthesis and characterization of high-performance epoxy resin based on disiloxane and 4,4'-oxybis(benzoic acid) ester,” J. Appl. Polym. Sci. 123, 2485–2491 (2011).

    Article  Google Scholar 

  27. Peng Yang, Mengyuan Ren, Kongfa Chen, et al., “Synthesis of a novel silicon-containing epoxy resin and its effect on flame retardancy, thermal, and mechanical properties of thermosetting resins,” Mater. Today Commun. 19, 186—195 (2019). https://doi.org/10.1016/j.mtcomm.2019.01.014

    Article  CAS  Google Scholar 

  28. Lingqiang Kong, Yuanrong Cheng, Yunxia Jin, et al., “Low k epoxy resin containing cycloaliphatic hydrocarbon with high crosslinking density,” J. Appl. Polym. Sci. 133, 43456 (2016). https://doi.org/10.1002/APP.43456

    Article  Google Scholar 

  29. Hu Xiao-long and Huang Peng-cheng, “The influence of polyether based amine curing agent on high temperature and cryogenic adhesion properties of epoxy resins,” Adhes. China (2004). https://en.cnki.com.cn/Article_en/CJFDTotal-NIAN200404008.htm.

  30. H. Li, Z. Liu, J. Gu, et al., “Preparation of high performance adhesives matrix based on epoxy resin modified by bis-hydroxy terminated polyphenylene oxide,” J. Adhes. Sci. Technol 32, 1224–1238 (2017).

    Article  Google Scholar 

  31. K. G. Guliev, N. Ya. Ishchenko, U. A. Khamedova, et al., “Modification of ED-20 epoxy resin with cyclopropane-containing compounds,” Plast. Massy, Nos. 3—4, 19—20 (2019).

    Article  Google Scholar 

  32. S. F. Li, W. D. Huang, X. L. Liu, and X. Yu, “New epoxy-imide resins cured with n-(3-hydroxyphenyl) trimellitimide: Synthesis, thermal and adhesive properties,” Plast. Rubber Compos. 38, 206–210 (2009).

    Article  CAS  Google Scholar 

  33. Leena Karthikeyan, Temina Mary Robert, Dona Mathew, et al., “Novel epoxy resin adhesives toughened by functionalized poly (ether ether ketone)s,” Int. J. Adhes. and Adhes. 106, 102816 (2021). https://doi.org/10.1016/j.ijadhadh.2021.102816

  34. Ranajit Pal, Suraj Sudhi, and Rajeev Raghavan, “Fabrication and evaluation of structural film adhesive using oxazolidinone modified novolac epoxy resin,” J. Appl. Polym. Sci. 136, 47520 (2019).

    Article  Google Scholar 

  35. A. P. Petrova and G. V. Malysheva, Glue, Adhesive Binder and Adhesive Prepregs (VIAM, Moscow, 2017) [in Russian].

    Google Scholar 

  36. Liwei Wang, Jinyan Wang, et al., “Preparation of novel epoxy resins bearing phthalazinone moiety and their application as high-temperature adhesives,” Polymers 10, 708 (2018). https://doi.org/10.3390/polym10070708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hong Li, Gong Chen, Hang Su et al., “Effect of the stoichiometric ratio on the cross-linked network structure and cryogenic properties of epoxy resins cured at low temperature,” Eur. Polym. J. 112, 792–798 (2019).

  38. J. Liu, J. Tang, X. Wang, and D. Wu, “Synthesis, characterization and curing properties of a novel cyclolinear phosphazene-based epoxy resin for halogen-free flame retardancy and high performance,” RSC Advances 2, 5789 (2012).

    Article  CAS  Google Scholar 

  39. I. Kaya and M. Gul, “Synthesis, characterization and some properties of epoxy resins containing azomethine bonding,” Chin. J. Polym. Sci. 31, 1087–1095 (2013).

    Article  CAS  Google Scholar 

  40. H. Ren, J. Sun, B. Wu, and Q. Zhou, “Synthesis and characterization of a novel epoxy resin containing naphthyl/dicyclopentadiene moieties and its cured polymer,” Polym. 47, 8309–8316 (2006).

    Article  CAS  Google Scholar 

  41. S. G. Prolongoa, G. Del Rosariob, and A. Urena, “Comparative study on the adhesive properties of different epoxy resins,” Int. J. Adhes. and Adhes 26, 125–132 (2006).

    Article  Google Scholar 

  42. Epoxy Adhesive Formulation, Ed. by M. Petrie (McGraw-Hill, New York, 2006).

    Google Scholar 

  43. Yu Liu, Guo Yang, Hong-Mei Xiao, et al., “Mechanical properties of cryogenic epoxy adhesives: Effects of mixed curing agent content,” Int. J. Adhes. Adhes. 41, 113—118 (2013).

    Article  CAS  Google Scholar 

  44. V. F. Stroganov, “Epoxyamine polymers obtained by curing with adamantane diamines,” Klei. Germetiki. Tekhnol., No. 10, 2—5 (2013).

    Google Scholar 

  45. E. Devadoss, “Cyclomatrix poly(organophosphazenes)–some aspects of synthesis, characterization and adhesive heat resistance,” J. Appl. Polym. Sci. 28, 921–941 (1983).

    Article  CAS  Google Scholar 

  46. Ajinkya Satdive, Siddhesh Mestry, et al., “Phosphorus- and silicon-containing amino curing agent for epoxy resin,” Iran. Polym. J. 29, 433—443 (2020).

    Article  CAS  Google Scholar 

  47. O. B. Nazarenko, T. V. Melnikova, and P. M. Visakh, “Thermal and mechanical characteristics of polymer composites based on epoxy resin, aluminium nanopowders and boric acid,” J. Phys.: Conf. Ser. 671, 012040 (2016).

    Google Scholar 

  48. Meili Cui, Lili Zhang, Pingping Lou, et al., “Study on thermal degradation mechanism of heat-resistant epoxy resin modified with carboranes,” Polym. Degrad. Stab. 176, 109143 (2020).

    Article  CAS  Google Scholar 

  49. Z. Juan, Q. Ning, J. Shaohua, and W. Suping, “Research on the preparation of heat-resistant epoxy resin cured by o-carborane-based diamine,” High Perform. Polym. 30, (2017).https://doi.org/10.1177/0954008317739680

  50. Guo Han, Zhen Yang, Xiao-xue Yang, et al., “Synthesis, characterization and thermal stability of novel carborane-containing epoxy novolacs,” Chin. J. Polym. Sci. 34, 1103—1116 (2016).

    Article  CAS  Google Scholar 

  51. Buddhadeb Roy and Niranjan Karak, “Synthesis and characterization of thermostable hyperbranched epoxy resin for surface coating applications,” J. Mater. Res. 27, 1806–1814 (2012).

    Article  CAS  Google Scholar 

  52. Y. L. Zhao, R. J. Huang, H. Zhang, et al., “Effect of hyperbranched polymer modified on the impact strength of epoxy resin at cryogenic temperature,” J. Phys.: Conf. Ser. 1857, 012010 (2021). https://doi.org/10.1088/1742-6596/1857/1/012010

  53. M. S. Fedoseev and L. F. Derzhavinskaya, “One-pack epoxy adhesives containing latent hardeners,” Polym. Sci., Ser. D 5, 116—119 (2012).

    CAS  Google Scholar 

  54. Z. Wu, S. Li, M. Liu, et al., “Liquid oxygen compatible epoxy resin: Modification and characterization,” RSC Adv. 5, 11325–11333 (2015). https://doi.org/10.1039/c4ra14100h

    Article  CAS  Google Scholar 

  55. Li Jia-Liang, Wang Chao, and Lu Ke-Yu, “Enhanced cryogenic mechanical properties and liquid oxygen compatibility of dopo-containing epoxy resin reinforced by epoxy-grafted polysiloxane,” Polym. Bull. 77 (2020). https://doi.org/10.1007/s00289-019-02931-8

  56. D. Baek, K.-B. Sim, and H.-J. Kim, “Mechanical characterization of core-shell rubber/epoxy polymers for automotive structural adhesives as a function of operating temperature,” Polym. 13, 734 (2021). https://doi.org/10.3390/polym13050734

    Article  CAS  Google Scholar 

  57. Y. X. He, Y. F. Sang, L. Zhang, et al., “Coefficient of thermal expansion and mechanical properties at cryogenic temperature of core-shell rubber particle modified epoxy.” Plast. Rubber Compos. 43, 89–97 (2014). https://doi.org/10.1179/1743289814y.0000000074

    Article  CAS  Google Scholar 

  58. D. G. Dixon, W. Unger, M. Naylor, et al., “Physical modifications for improved peel strength in a high temperature epoxy adhesive,” Int. J. Adhes. Adhes. 18, 125–130 (1998). https://doi.org/10.1016/S0143-7496(97)00058-4

    Article  CAS  Google Scholar 

  59. Jin Gyu Kim, Yun Jeong Hwang, et al., “Improvement of the fracture toughness of adhesively bonded stainless steel joints with aramid fibers at cryogenic temperatures,” Compos. Struct. 94, 2982—2989 (2012).

    Article  Google Scholar 

  60. R. Michaels, “Epoxies and adhesives fit for space,” https://www.machinedesign.co/fastening-joining/article/21832856/epoxies-and-adhesives-fit-for-space.

  61. “New conductive epoxy adhesive for space-environment,” http://www.adhesives.org/resources/knowledge-center/aggregate-single/new-conductive-epoxy-for-space-environment-assembly.

  62. S. H. Yoon and B. C. Kim, et al., “Improvement of the adhesive fracture toughness of bonded aluminum joints using e-glass fibers at cryogenic temperature,” J. Adhes. Sci. Technol. 24, 429–444 (2010). https://doi.org/10.1163/016942409X12541266699635

    Article  CAS  Google Scholar 

  63. A. I. Vyalov, S. N. Gladkikh, A. S. Shestakov, and A. E. Dvoretskii, “New Structural Adhesives for Spacecraft, Capable of Operating in the Range from Cryogenic to Elevated Temperatures,” in Reshetnikov Readings (2014), pp. 66—67. https://cyberleninka.ru/article/n/novye-konstruktsionnye-klei-dlya-ka-rabotosposobnye-v-diapazone-ot-kriogennyh-do-povyshennyh-temperatur.

  64. A. P. Petrova, I. A. Sharova, N. F. Lukina, and V. M. Buznik, “The applicability of adhesives in arctic conditions,” Polym. Sci., Ser. D 9, 188–194 (2016). https://doi.org/10.1134/S1995421216020179

    Article  CAS  Google Scholar 

  65. A. K. Andreev and B. S. Ermakov, Materials for Low-Temperature Technology: Textbook (Univ. ITMO, St. Petersburg, 2016).

    Google Scholar 

  66. Zahed Ahmadi, “Nanostructured epoxy adhesives: A review,” Prog. Org. Coat 135, 449–453 (2019). https://doi.org/10.1016/j.porgcoat.2019.06.028

    Article  CAS  Google Scholar 

  67. S. Bhowmik, R. Benedictus, J. A. Poulis, et al., “High-performance nanoadhesive bonding of titanium for aerospace and space applications,” Int. J. Adhes. Adhes. 29, 259–267 (2009). https://doi.org/10.1016/j.ijadhadh.2008.07.002

    Article  CAS  Google Scholar 

  68. H. M. S. Iqbal and S. Bhowmik, “Thermo-mechanical characteristics of space durable nano adhesive joint of high-performance polymer,” in Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (Palm Springs, CA, 2009). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.705.6823&rep=rep1&type=pdf.

  69. Prakriti Kumar Ghosh, Manjeet Singh Goyat, et al., “Physical and mechanical properties of epoxy-nanoparticulate composite adhesive,” Adv. Mater. Res. 585, 297—300 (2012). https://doi.org/10.4028/www.scientific.net/AMR.585.297

  70. U. A. Khashaba, Ramzi. Othman, and M. R. Najjar Ismael, “Development and characterization of structural adhesives for aerospace industry with alumina nanoparticles under shear and thermo-mechanical impact loads,” Proc. Inst. Mech. Eng., Part G 095441001987555 (2019). https://doi.org/10.1177/0954410019875557

  71. H. -L. Ma, X. Zhang, K. Lau, and S. Shi, “Effect of nanoclay concentration on the lap joint shear performance of nanoclay/epoxy adhesive at cryogenic condition,” J. Compos. Mater. 52, 2477–2482 (2017). https://doi.org/10.1177/0021998317748202

    Article  CAS  Google Scholar 

  72. R. S. E. John, A. P. Malshe, V. Dotsenko, et al., “Nano-integrated adhesive for cryogenic packaging (4k) of harsh environment electronics,” in Proceedings 60th Electronic Components and Technology Conference (ECTC) (2010). https://doi.org/10.1109/ectc.2010.5490661

  73. Zhen-Kun Chen, Jiao-Ping Yang, Qing-Qing Ni, et al., “Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties,” Polym. 50 4753—4759 (2009).

    Article  CAS  Google Scholar 

  74. S. Vijay Swarna, Ibrahim M. Alarifi, Waqar A. Khan, and Ramazan Asmatulu, “Enhancing fire and mechanical strengths of epoxy nanocomposites for metal/metal bonding of aircraft aluminum alloys,” Polym. Compos. 40, 3691—3702 (2019). https://doi.org/10.1002/pc.25231

    Article  CAS  Google Scholar 

  75. X. J. Shen, Y. Liu, H. M. Xiao, et al., “The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins,” Compos. Sci. and Technol. 72, 1581–1587 (2012).

    Article  CAS  Google Scholar 

  76. R. Kumar, S. Mohanty, and S. K. Nayak, “Study on epoxy resin-based thermal adhesive filled with hybrid expanded graphite and graphene nanoplatelet,” SN Appl. Sci 1, 337 (2019). https://doi.org/10.1007/s42452-019-0200-6

    Article  CAS  Google Scholar 

  77. C. J. Huang, S. Y. Fu, Y. H. Zhang, et al., “Cryogenic properties of SiO2/epoxy nanocomposites,” Cryogenics 45, 450–454 (2005).

    Article  CAS  Google Scholar 

  78. E. A. Yakovlev, A. S. Mostovoi, E. V. Plakunova, and L. G. Panova, “Investigation of the influence of physical and chemical methods of modification of the filled adhesive epoxy composition,” Dizain. Mater. Tekhol. 5, 149—152 (2013). https://www.researchgate. net/publication/315694435.

  79. Kunal Mishra, Gajendra Pandey, and Raman P. Singh, “Enhancing the mechanical properties of an epoxy resin using polyhedral oligomeric silsesquioxane (POSS) as nano-reinforcement,” Polym. Testing 62, 210–218 (2017).

    Article  CAS  Google Scholar 

  80. H. Dodiuka, S. Keniga, I. Balinsky, et al., “Nanotailoring of epoxy adhesives by polyhedral-oligomeric-sil-sesquioxane (POSS),” Int. J. Adhes. Adhes. 25, 211–218 (2005).

    Article  Google Scholar 

  81. Zengping Zhang, Guozheng Liang, and Xiaolei Wang, “The Effect of POSS on the thermal properties of epoxy,” Polymer. Bull. 58, 1013–1020 (2007). https://doi.org/10.1007/s00289-007-0732-6

    Article  CAS  Google Scholar 

  82. A. Buchman, H. Dodiuk-Kenig, A. Dotan, et al., “Toughening of epoxy adhesives by nanoparticles,” J. Adhes. Sci. Technol. 23, 753–768 (2009).

    Article  Google Scholar 

  83. J. Bishopp, “Adhesives for Aerospace Structures,” in Handbook of Adhesives and Surface Preparation (2011), pp. 301–344. https://doi.org/10.1016/B978-1-4377-4461-3.10013-6

  84. “Epoxy adhesives for cryogenic applications,” http://www.masterbond.com/properties/epoxy-adhesives-cryogenic-applications.

  85. Gurdial Blugan, Gustavo Mata-Osoro, Simon Fecht, et al., “Torsional shear strength of steel joined with high performance aerospace adhesives at cryogenic and elevated temperatures,” PloS One 13, e0206981 (2018). https://doi.org/10.1371/journal.pone.0206981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. “High temperature epoxy resin,” www.final-materials.com/gb/257-high-temperature-epoxy-resin.

  87. “High temperature resistant bonding, sealing and coating compounds,” http://www.masterbond.com/properties/high-temperature-resistant-bonding-sealing-and-coating-compounds.

  88. “Description for epoxy technology Epo-Tek 301-1”, www.gluespec.com/Materials/adhesive/epoxy-technology/epo-tek-301-1

  89. ASTM D6412/D6412M-99. Standard Specification for Epoxy (Flexible) Adhesive for Bonding Metallic and Nonmetallic Materials.

  90. S. Black, “Structural adhesives, Part II: Aerospace. 2016,” http://www.compositesworld.com/articles/structural-adhesives-part-ii-aerospace.

  91. C. Severijns, S. Teixeira De Freitas, and J. A. Poulis, “Susceptor-assisted induction curing behaviour of a two component epoxy paste adhesive for aerospace applications,” Int. J. Adhes. and Adhes 75, 155–164 (2017).

    Article  CAS  Google Scholar 

  92. Adhesive Materials. Sealants: Handbook, Ed. by A. P. Petrova (Professional, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  93. http://kraska.biz/polimernye-materialy/klei-s-termostojkostyu-do-150-s/.

  94. http://sktb-technolog.ru/chemical/sealants-adhesives-compounds/.

  95. https://npksteP.ru/products/special-compounds/tks-500/.

  96. L. A. Dement’eva, K. E. Kutsevich, N. F. Lukina, et al., “Properties of an epoxy structural film adhesive modified by polysulfones,” Polym. Sci., Ser. D 10, 143–149 (2017). https://doi.org/10.1134/S1995421217020058

    Article  Google Scholar 

  97. E. N. Kablov, L. V. Chursova, N. F. Lukina, et al., “A study of epoxide–polysulfone polymer systems for high-strength adhesives of aviation purpose,” Polym. Scvi., Ser. D 10, 225–229 (2017).

    CAS  Google Scholar 

  98. A. P. Petrova, N. F. Lukina, and L. A. Dement’eva, “Adhesives for aviation equipment,” Rus. J. Gen. Chem. 81, 1014–1021 (2011). https://doi.org/10.1134/S1070363211050331

    Article  CAS  Google Scholar 

  99. A. P. Petrova, N. F. Lukina, and E. V. Kotova, “The use of adhesives for gluing heat-shielding and heat-insulating materials,” Novosti Materialoved. Nauka i Tekhnika, No. 2 (2013). http://materialsnews.ru/plugins/content/journal/uploads/articles/pdf/17.pdf.

  100. A. P. Petrova, N. F. Lukina, L. A. Dement’eva, et al., “Adhesives for aviation equipment,” Trudy VIAM 205375 (2009).

  101. G. R. Garaeva, S. N. Gladkikh, and M. A. Belinskii, “One-package epoxy adhesive materials with high heat resistance,” Polym. Sci., Ser. D 10, 40–44 (2017). https://doi.org/10.1134/S1995421217010087

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Aronovich.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aronovich, D.A. A Review of Modern Adhesive Materials Operating in a Wide Temperature Range. Epoxy Adhesives. Polym. Sci. Ser. D 16, 14–33 (2023). https://doi.org/10.1134/S1995421223010069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421223010069

Keywords:

Navigation