Skip to main content
Log in

Preparation and Study of the Properties of Biodegradable Keratin-Containing Compositions

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

Keratin-containing biocomposites of different dispersity were obtained based on polyethylene and polylactide. The dependence of the properties of compositions on the nature of the polymer matrix and the content of keratin was found. The X-ray microtomography has shown that the exposure of composites in soil leads to an increase in the porosity of materials. The capacity of the obtained materials for biodegradation was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. Z. Rogovina, E. V. Prut, and A. A. Berlin, “Composite materials based on synthetic polymers reinforced with natural fibers,” Polymer. Sci., Ser. A 61, 417–438 (2019)

    Article  CAS  Google Scholar 

  2. J. R. Barone, “Polyethylene/keratin fiber composites with varying polyethylene crystallinity,” Composites, Part A 36 1518 (2005).

    Article  Google Scholar 

  3. J. R. Barone and W. F. Schmidt, “Polyethylene reinforced with keratin fibers obtained from chicken feathers,” Compos. Sci. Technol. 65, 173 (2005).

    Article  CAS  Google Scholar 

  4. J. R. Barone, W. F. Schmidt, and C. F. E. Liebner, “Compounding and molding of polyethylene composites reinforced with keratin feather fiber,” Composites Sci. Techn. 65, 683–692 (2005).

    Article  CAS  Google Scholar 

  5. S. Huda and Y. Yang, “Feather fiber reinforced lightweight composites with good acoustic properties,” J. Polym. Environ. 17, 131 (2009).

    Article  CAS  Google Scholar 

  6. I. Spiridon, O. M. Paduraru, M. Rudowski, et al., “Assessment of changes due to accelerated weathering of low-density polyethylene/feather composites,” Ind. Eng. Chem. Res. 51, 7279 (2012).

    Article  CAS  Google Scholar 

  7. D. Garlotta, “A literature review of poly(lactic acid),” J. Polym. Environ. 9, 684 (2001).

    Article  Google Scholar 

  8. F. Carrillo, A. Rahhali, J. Canavate, and X. Colom, “Biocomposites using waste whole chicken feathers and thermoplastic matrices,” J. Reinf. Plast. Com. 32, 1419–1429 (2013).

    Article  Google Scholar 

  9. E. V. Prut, “Instability of plastic flow and multiple destruction (refinement) of polymer materials,” Vysokomol. Soed., Ser. B 36 (4), 601–607 (1994).

    CAS  Google Scholar 

  10. S. A. Vol’fson and V. G. Nikol’skii, “Solid-phase deformation disintegration and refinement of polymer materials,” Vysokomol. Soedin., Ser. B 36, 1040–1056 (1994).

    Google Scholar 

  11. A. Sasov and D. Van Dyck, “Desktop X-Ray microscopy and microtomography,” J. Microscopy 191, 151 (1998).

    Article  CAS  Google Scholar 

  12. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” Opt. Soc. Amer. A 1, 612 (1984).

    Article  Google Scholar 

  13. E. V. Prut, R. S. Smykovskaya, O. P. Kuznetsova, et al., “New polymer composite materials on the basis of keratin and polyethylene,” Dokl. Akad. Nauk 473, 317 (2017).

    Google Scholar 

  14. E. V. Prut, R. S. Smykovskaya, O. P. Kuznetsova, et al., “Biodegradable composite materials on the basis of keratin and polyethylene,” Vestn. Tverskogo Gos. Univ., Ser. Khimiya, No. 2, 39 (2017).

    Google Scholar 

  15. J. A. Manson and L. H. Sperling, Polymer Blends and Composites (Sperling Plenum Press, New York, 1976; Khimiya, Moscow, 1979).

  16. S. L. Bazhenov, Plastics Additives (Chapman & Hall, London, 1998).

    Google Scholar 

  17. O. A. Serenko, G. P. Goncharuk, E. S. Obolonkova, and S. L. Bazhenov, “The brittle-ductile transition in rubber-filled polymers,’” Polym. Sci., Ser A 48, 302–313 (2006).

    Article  Google Scholar 

  18. R. S. Smykovkaya, O. P. Kuznetsova, and E. V. Prut, “Ageing of Composite Materials on the Basis of Thermplastic Polymers and Keratin,” in Proceedings of the Fifth Interdisciplinary Scientific Forum ‘New Materials and Promising Technologies’ (2019), pp. 554–556.

  19. L. A. Zhorina, O. P. Kuznetsova, S. Z. Rogovina, L. V. Vladimirov, A. V. Grachev, E. V. Prut, and A. A. Berlin, “Structure and properties of crumb rubber–starch composites,” Russ. J. Phys. Chem. B 12, 1076–1081 (2018).

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out with the financial support from the Russian Foundation for Basic Research, project no. 19-33-90240.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Smykovskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smykovskaya, R.S., Kuznetsova, O.P., Medintseva, T.I. et al. Preparation and Study of the Properties of Biodegradable Keratin-Containing Compositions. Polym. Sci. Ser. D 15, 409–415 (2022). https://doi.org/10.1134/S1995421222030273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421222030273

Keywords:

Navigation