Skip to main content
Log in

The Use of Biopolyols Obtained from Liquid Birch Sawdust Pyrolysis Products as a Renewable Component in the Production of Rigid Polyurethane Foams

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

This paper presents a scheme for fractionation of liquid pyrolysis products of birch sawdust to obtain a carbohydrate fraction and its use as a biopolyol in the production of polyurethane foam. GCMS analysis and IR spectrometry of biopolyols were carried out. Samples of polyurethane foam with particular replacement of 20, 30, and 40% biopolyol were obtained. Thermal conductivity of the obtained polyurethane foam samples was measured. The results of the work carried out allow it to be concluded that reactive OH groups are present in the carbohydrate fraction and the biopolyols from pyrolysis liquid of birch sawdust can be used in the synthesis of hard polyurethane foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. I. Sabirzyanova, A. R. Valeeva, G. M. Bikbulatova, and R. M. Khaziakhmedov, “Destruction of polyurethane foam modified with biopolyols under artificial climatic factors,” in Proceedings of the XI Internaitonal Youth Scientific Conf. “Youth and 21st Century” (Kursk, 2021), Vol. 5, pp. 382–385.

  2. K. Błażek and J. Datta, “Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review,” Crit. Rev. Environ. Sci. Technol. 49 (3), 173–211 (2019). https://doi.org/10.1080/10643389.2018.1537741

    Article  CAS  Google Scholar 

  3. M. Kurańska and E. Malewska, “Waste cooking oil as starting resource to produce bio-polyol–analysis of transesteryfication process using gel permeation chromatography,” Ind. Crops Prod. 162, 113294 (2021). https://doi.org/10.1016/j.indcrop.2021.113294

    Article  CAS  Google Scholar 

  4. A. E. Yakovleva, A. I. Sabirzyanova, S. A. Zabelkin, A. N. Grachev, V. N. Bashkirov, and T. Shul’tske, “Synthesis of polyurethane foam from various types of pyrolysis liquid and analysis of its strength and chemical structure,” Derevoobrab. Prom-st., No. 4, 39–47 (2018).

  5. J. Paciorec-Sadowska, M. Borowicz, et al., “New bio-polyol based on white mustard seed (Sinapis alba) as an alternative raw material for the polyurethane industry,” Polimery 63 (10), 694–699 (2021).

    Article  Google Scholar 

  6. J. Kang, W. Chen, Y. Yao, et al., “Optimization of bio-polyol production from cassava residue using ethylene glycol as the liquefaction reagent,” J. Wuhan Univ. Technol., Mater. Sci. Ed. 34, 945–949 (2019).

    CAS  Google Scholar 

  7. M. A. Salleh, I. B. M. Jais, D. Che Lat, and N. Samat, “Compressibility of palm kernel oil-based polyurethane foam using rowe cell apparatus for ground improvement,” Key Eng. Mater. 844, 24–31 (2020).

    Article  Google Scholar 

  8. https://energolesprom.ru/.

  9. M. A. Varfolomeev, V. N. Emel’yanenko, T. R. Musin, A. V. Gerasimov, D. K. Nurgaliev, A. N. Grachev, A. A. Makarov, and S. A. Zabelkin, “Thermal analysis and calorimetric study of the combustion of hydrolytic wood lignin and products of its pyrolysis,” Chem. Technol. Fuels Oils 51 (1), 140–145 (2015).

    Article  CAS  Google Scholar 

  10. G. M. Fayzrakhmanova, S. A. Zabelkin, A. N. Grachev, and V. N. Bashkirov, “A study of the properties of a composite asphalt binder using liquid products of wood fast pyrolysis,” Polym. Sci., Ser. D 9, 181–184 (2016).

    CAS  Google Scholar 

  11. S. A. Zabelkin, A. N. Grachev, G. M. Bikbulatova, A. E. Yakovleva, A. A. Makarov, and V. N. Bashkirov, “Resole-type phenol–formaldehyde resin with neutralized liquid products of fast pyrolysis of birch wood,” Polym. Sci., Ser. D 11, 131–134 (2018).

    CAS  Google Scholar 

  12. W. Zhang, Y. Ma, C. Wang, et al., “Preparation and properties of lignin–phenol–formaldehyde resins based on different biorefinery residues of agricultural biomass,” Ind. Crops Prod. 43, 326–333 (2013).

    Article  Google Scholar 

  13. S. Zabelkin, A. Grachev, G. Fayzrakhmanova, A. Makarov, and V. Bashkirov, “Application of the water-insoluble pyrolysis oil fraction as an organic binder,” Constr. Build. Mater. 102, 59–64 (2016).

    Article  CAS  Google Scholar 

  14. M. Yu. Mikulintseva, “Liquid products of wood pyrolysis as new opportunities for green chemistry,” Mezhdunar. Stud. Nauchn. Vestn., No. 5, (2018).

  15. J. Paciorek-Sadowska, M. Borowicz, et al., “New bio-polyol based on white mustard seed (Sinapis alba) as an alternative raw material for the polyurethane industry,” Polimery 63 (10), 694–699 (2021).

    Article  Google Scholar 

  16. S. Zabelkin, A. Valeva, A. Sabirzyanova, A. Grachev, and V. Bashkirov, “Neytrals influence on the water resistance coefficient of phenol-formaldehyde resin modified by wood pyrolysis liquid products,” Biomass Conv. Bioref., (2020). https://doi.org/10.1007/s13399-020-01025-0

  17. A. Stücker, F. Schütt, et al., “Lignins from enzymatic hydrolysis and alkaline extraction of steam refined poplar wood: utilization in lignin-phenol-formaldehyde resins,” Ind. Crops Prod. 85, 300–308 (2016).

    Article  Google Scholar 

  18. W. Zhang, Y. Ma, C. Wang, et al., “Preparation and properties of lignin–phenol–formaldehyde resins based on different biorefinery residues of agricultural biomass,” Ind. Crops Prod. 43, 326–333 (2013).

    Article  Google Scholar 

  19. E. Pretsch, P. Bühlmann, and C. Affolter, Structure Determination of Organic Compounds: Tables of Spectral Data (Springer, Berlin, 2000; BINOM. Laboratoriya Znanii, Moscow, 2006).

  20. GOST (State Standard) 7076–99: Building Materials and Products. Method of Determination of Steady-State Thermal Conductivity and Thermal Resistance (Standartinform, Moscow, 2000) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Valiullina.

Additional information

Translated by K. Gumerov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valiullina, A.I., Grachev, A.N., Valeeva, A.R. et al. The Use of Biopolyols Obtained from Liquid Birch Sawdust Pyrolysis Products as a Renewable Component in the Production of Rigid Polyurethane Foams. Polym. Sci. Ser. D 15, 300–305 (2022). https://doi.org/10.1134/S1995421222020307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421222020307

Keywords:

Navigation