Skip to main content
Log in

Aging of Basalt Plastics in Open Climatic Conditions

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

A review of studies on aging of basalt plastics (BPs) under natural climatic conditions is presented. The mechanisms of aging are analyzed based on the results of deformation and strength measurements, dynamic mechanical analysis, linear dilatometry, moisture sorption and diffusion, microscopy, and other methods sensitive to physicochemical transformations in polymer matrices of BPs and at the polymer–filler interface. The role of internal stresses in comparing BP aging in different climatic zones has been determined. The influence of the dominant climatic factors (temperature and thermal cycles, moisture, ultraviolet radiation) on the mechanical parameters of the BP is considered. New results are presented on the durability of BP reinforcement when exposed under static bending loads in open conditions of a moderately warm climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. Parnas, M. Shaw, and Q. Liu, Basalt Fiber Reinforced Polymer Composites, Technical Report NETCR63 (Institute of Materials Science, University of Connecticut, 2007).

  2. A. A. Dalinkevich, K. Z. Gumargalieva, et al., “Modern basalt fibrous materials and basalt fiber-based polymeric composites,” J. Nat. Fibers 6 (3), 248–271 (2009).

    Article  CAS  Google Scholar 

  3. V. Dhand, G. Mittal, et al., “A short review on basalt fiber reinforced polymer composites,” Composites, Part B 73, 166–180 (2015).

    Article  CAS  Google Scholar 

  4. V. Fiore, T. Scalici, et al., “A review on basalt fibre and its composites,” Composites, Part B 74, 74–94 (2015).

    Article  CAS  Google Scholar 

  5. H. Jamshaid and R. Mishra, “A green material from rock: Basalt fiber—a review,” J. Text. Inst. 107 (7), 923–937 (2016).

    Article  CAS  Google Scholar 

  6. G. Vikas and M. Sudheer, “A review on properties of basalt fiber reinforced polymer composites,” Am. J. Mater. Sci. 7 (5), 156–165 (2017).

    Google Scholar 

  7. T. I. Koval’, “Investigation of the reliability of bridge elements reinforced with basalt plastic fibers,” Mech. Compos. Mater. 53 (4), 479–486 (2017).

    Article  Google Scholar 

  8. E. Monaldo, F. Nerilli, and G. Vairo, “Basalt-based fiber-reinforced materials and structural applications in civil engineering,” Compos. Struct. 214, 246–263 (2019).

    Article  Google Scholar 

  9. Z. Wang, X. L. Zhao, et al., “Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment,” Constr. Build. Mater. 139, 467–489 (2017).

    Article  CAS  Google Scholar 

  10. I. F. Davydova, N. S. Kavun, and E. P. Shvetsov, “Basalt plastics for work at high temperatures,” Vse Mater., No. 6, 37–40 (2012).

    Google Scholar 

  11. S. Sharma, D. Zhang, and Q. Zhao, “Degradation of basalt fiber-reinforced polymer bars in seawater and sea sand concrete environment,” Adv. Mech. Eng. 12 (3), 1–11 (2020).

    Article  Google Scholar 

  12. M. P. Lebedev, O. V. Startsev, and A. K. Kychkin, “The effects of aggressive environments on the mechanical properties of basalt plastics,” Heliyon 6 (3), e03481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O. V. Startsev, M. P. Lebedev, and A. K. Kychkin, “Aging of polymer composites in extremely cold climates,” Izv. Altai. Gos. Univ., No. 1, 41–51 (2020).

  14. E. N. Kablov and V. O. Startsev, “Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review),” Aviats. Mater. Tekhnol., No. 2, 47–58 (2018).

  15. A. N. Blaznov, A. S. Krasnova, et al., “Geometric and mechanical characterization of ribbed FRP rebars,” Polym. Test. 63, 434–439 (2017).

    Article  CAS  Google Scholar 

  16. S. Cao and Z. Wu, “Tensile properties of FRP composites at elevated and high temperatures,” J. Appl. Mech. 11, 963–970 (2008).

    Article  Google Scholar 

  17. A. Dorigato and A. Pegoretti, “Flexural and impact behaviour of carbon/basalt fibers hybrid laminates,” J. Compos. Mater. 48 (9), 1121–1130 (2014).

    Article  Google Scholar 

  18. S. K. Golla and P. Prasanthi, “Prediction of micromechanical behavior of fiber (glass/basalt) reinforced polymer composites,” Int. Res. J. Eng. Technol. 3, 1557–1563 (2016).

    Google Scholar 

  19. B. S. Kanthraju and B. Suresha, “Enhancement of mechanical properties and wear resistance of epoxy: Glass fiber, basalt fiber, polytetrafluoroethylene and graphite,” Indian J. Adv. Chem. Sci., No. S1, 107–113 (2016).

  20. M. H. Lapena and G. Marinucci, “Mechanical characterization of basalt and glass fiber epoxy composite tube,” Mater. Res. 21 (1), 1–7 (2017).

    Article  Google Scholar 

  21. I. G. Matveeva and M. P. Lebedev, “Polymer composite materials based on basalt,” Theor. Found. Chem. Eng. 5 (4), 670–672 (2018).

    Article  Google Scholar 

  22. A. K. Kychkin and A. A. Vasilyeva, “Investigation of physical and mechanical characteristics of composite reinforcement bars made on the basis of basalt roving,” Vestn. Sev.-Vost. Fed. Univ. 9 (3), 80–85 (2012).

    Google Scholar 

  23. D. Plappert, G. C. Ganzenmuller, et al., “Mechanical properties of a unidirectional basalt-fiber/epoxy composite,” J. Compos. Sci. 4 (3), 101 (2020).

    Article  CAS  Google Scholar 

  24. A. Dorigato and A. Pegoretti, “Fatigue resistance of basalt fibers-reinforced laminates,” J. Compos. Mater. 46 (15), 1773–1785 (2012).

    Article  Google Scholar 

  25. C. R. Mahesha, Shivarudraiah et al. “Solid particle erosion of basalt fiber and glass fiber-epoxy composite,” Int. J. Mech. Prod. Eng. 2, 3034 (2014).

    Google Scholar 

  26. F. A. Shishevan, H. Akbulut, et al., “Low velocity impact behavior of basalt fiber-reinforced polymer composites,” J. Mater. Eng. Perform. 26 (6), 2890–2900 (2017).

    Article  CAS  Google Scholar 

  27. J. Sim, C. Park, and D. Y. Moon, “Characteristics of basalt fiber as a strengthening material for concrete structures,” Composites, Part B 36 (6-7), 504–512 (2005).

    Article  Google Scholar 

  28. O. V. Startsev, A. A. Litvinov, V. O. Startsev, et al., “Linear thermal expansion coefficient relaxation of basalt fiber-reinforced plastics and their components,” Vestn. Yugorsk. Gos. Univ., No. 2, 80–86 (2009).

  29. E. Kessler, R. Gadow, and J. Straub, “Basalt, glass and carbon fibers and their fiber reinforced polymer composites under thermal and mechanical load,” AIMS Mater. Sci. 3 (4), 1561–1576 (2016).

    Article  CAS  Google Scholar 

  30. M. Amine, Master of Science Thesis (Université Laval, Québec, Canada, 2014).

  31. S. M. R. Khalili, M. Najafi, and R. Eslami-Farsani, “Effect of thermal cycling on the tensile behavior of polymer composites reinforced by basalt and carbon fibers,” Mech. Compos. Mater. 52 (6), 807–816 (2017).

    Article  CAS  Google Scholar 

  32. M. D. Lund and Y.-Z. Yue, “Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers,” J. Non-Cryst. Solids 354 (12–13), 1151–1154 (2008).

    Article  CAS  Google Scholar 

  33. E. Quagliarini, F. Monni, et al., “Basalt fiber ropes and rods: durability tests for their use in building engineering,” J. Build. Eng. 5, 142–150 (2016).

    Article  Google Scholar 

  34. M. Wang, Z. Zhang, et al., “Chemical durability and mechanical properties of alkali-proof basalt fiber and its reinforced epoxy composites,” J. Reinf. Plast. Compos. 27 (4), 393–407 (2008).

    Article  Google Scholar 

  35. Y.-H. Kim, J.-M. Park, et al., “The effect of moisture absorption and gel-coating process on the mechanical properties of the basalt fiber reinforced composite,” Int. J. Ocean Syst. Eng. 1 (3), 148–154 (2011).

    Article  Google Scholar 

  36. Y. Wang, W. Zhu, et al., “Influence of thickness on water absorption and tensile strength of BFRP laminates in water or alkaline solution and a thickness-dependent accelerated ageing method for BFRP laminates,” Appl. Sci. 10 (10), 3618 (2020).

    Article  CAS  Google Scholar 

  37. O. S. Tatarintseva, N. N. Khodyakova, O. V. Startsev, et al., “Moisture of absorption effect on physicomechanical properties of basalt plastics,” Mekh. Kompoz. Mater. Konstr. 16 (2), 145–154 (2010).

    CAS  Google Scholar 

  38. D. V. Filistovich, O. V. Startsev, A. A. Kuznetsov, A. S. Krotov, L. I. Anikhovskaya, and L. A. Dement’eva, “Effect of moisture on the anisotropy of the dynamic shear modulus of glass-reinforced plastics,” Dokl. Phys. 48 (6), 306–308 (2003).

    Article  CAS  Google Scholar 

  39. O. V. Startsev, K. O. Prokopenko, A. A. Litvinov, A. S. Krotov, L. I. Anikhovskaya, and L. A. Dement’eva, “Study of thermohumid aging of aircraft fiberglass plastic,” Polym. Sci., Ser. D 3, 58–61 (2010).

    Article  Google Scholar 

  40. A. N. Blaznov, A. S. Krotov, V. B. Markin, V. V. Firsov, M. E. Zhurkovsky, N. V. Bychin, and Z. G. Sakoshev, “Change in physicomechanical and thermomechanical behavior of basalt plastic as a result of weathering,” Yuzhno-Sib. Nauch. Vestn., No. 3, 116–119 (2019).

  41. J. Zhao, et al., “Deterioration of basic properties of the materials in FRP-strengthening RC structures under ultraviolet exposure,” Polymers 9 (12), 402 (2017).

    Article  PubMed Central  Google Scholar 

  42. U. R. Hashim, et al., “Effects of accelerated weathering on degradation behavior of basalt fiber reinforced polymer nanocomposites,” Polymers 12 (11), 2621 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  43. F. Awaja, et al., “Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair,” Progr. Mater. Sci. 83, 536–573 (2016).

    Article  CAS  Google Scholar 

  44. K. V. Pochiraju, et al., Long-Term Durability of Polymeric Matrix Composites, Ed. by K.V. Pochiraju, G.P. Tandon, and G.A. Schoeppner (Springer, Boston, MA, 2012).

    Book  Google Scholar 

  45. Ageing of Composites, Ed. by M. R. Cambridje (Woodhead Publishing, 2008).

    Google Scholar 

  46. V. N. Bulmanis and O. V. Startsev, Prediction of Changes in the Strength of Polymer Fiber Composites as a Result of Climatic Impact (Institute of Physical-Chemical Problems of North, Yakutsk, 1988) [in Russian].

    Google Scholar 

  47. Yu. Yu. Fedorov and A. A. Gerasimov, “Research in influence of cold climate on mechanical properties of composite rods made of glass and basalt plastics,” Prom. Grazhd. Stroit., No. 8, 30–32 (2016).

    Google Scholar 

  48. A. K. Kychkin, V. V. Popov, and A. A. Kychkin, “Climate resistance of basalt composite reinforcement,” Nauka Obraz., No. 1, 71–74 (2017).

    Google Scholar 

  49. N. M. Chikhradze, L. A. Japaridze, and G. S. Abashidze, “Properties of basalt plastics and of composites reinforced by hybrid fibers in operating conditions,” in Composites and Their Applications, Ed. by H. Ning (InTech, London, 2012), p. 221–246.

    Google Scholar 

  50. G. Alaimo, et al., “The durability of basalt fibres reinforced polymer (BFRP) panels for cladding,” Mater. Struct. 49 (6), 2053– 2064 (2016).

    Article  CAS  Google Scholar 

  51. O. V. Startsev, M. P. Lebedev, Y. M. Vapirov, and A. K. Kychkin, “Comparison of glass-transition temperatures for epoxy polymers obtained by methods of thermal analysis,” Mech. Compos. Mater. 56 (2), 227–240 (2020).

    Article  CAS  Google Scholar 

  52. V. O. Startsev, M. P. Lebedev, and A. K Kychkin, “Influence of moderately warm and extremely cold climate on properties of basalt plastic armature,” Heliyon 4 (12), e01060 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. M. M. Shokrieh, Residual Stresses in Composite Materials (Elsevier, Amsterdam, 2014).

    Book  Google Scholar 

  54. H. T. Hahn, “Residual stresses in polymer matrix composite laminates,” J. Compos. Mater. 10 (4), 266–278 (1976).

    Article  CAS  Google Scholar 

  55. N. Hancox, “Thermal effects on polymer matrix composites: Part 1. Thermal cycling,” Mater. Des. 19, (3). 85–91 (1998).

  56. P. K. Dutta, “Structural fiber composite materials for cold regions,” J. Cold Reg. Eng. 2 (3), 124–134 (1988).

    Article  Google Scholar 

  57. O. V. Startsev, V. V. Polyakov, D. S. Salita., and M. P. Lebedev, “Acoustic emission at the crack tip during cooling of a moisture-saturated composite,” Dokl. Phys. Chem. 493, 91–94 (2020).

    Article  CAS  Google Scholar 

  58. K. D. Cowley and P. W. R. Beaumont, “The measurement and prediction of residual stresses in carbon-fibre/polymer composites,” Compos. Sci. Technol. 57 (11), 1445–1455 (1997).

    Article  CAS  Google Scholar 

  59. A. K. Kychkin, M. P. Lebedev, A. K. Kychkin, et al., “Investigation of the coefficient of linear temperature expansion of composite rods and heavy concrete,” in Proc. Int. Symp. “Engineering and Earth Sciences: Applied and Fundamental Research” dedicated to the 85th anniversary of H.I. Ibragimov (ISEES 2019) (Atlantis Press, Paris, 2019), p. 447–451.

  60. A. K. Kychkin, N. I. Golikov, V. V. Popov, and A. A. Kychkin, “Research into impacts of extremely cold climates on properties of basalt plastic rods,” Proc. Struct. Integrity 20, 198–205 (2019).

    Article  Google Scholar 

  61. A. K. Kychkin, V. V. Popov, and A. A. Kychkin, “Research of the effect of an extreme cold climate on the properties of basalt plastic rods,” Izv. Samar. Nauch. Tsentra Ros. Akad. Nauk, No. 2, 25–31 (2020).

    Google Scholar 

  62. O. V. Startsev, A. N. Blaznov, M. G. Petrov, and E. V. Atyasova, “Life study of polymer composite materials under static loads,” Vse Mater., No. 6, 9–20 (2019).

    Google Scholar 

  63. O. V. Startsev, M. P. Lebedev, and A. N. Blaznov, “Aging of polymer composite materials under loading,” Vse Mater., No. 11, 2–12 (2020).

    Google Scholar 

  64. A. N. Blaznov, D. E. Zimin, E. E. Anisimov, A. V. Sinitsyn, and M. E. Zhurkovskii, “Study of durability of composites under load and humidity,” Nauchno-Tekh. Vestn. Povolzh., No. 11, 98–101 (2018).

    Google Scholar 

  65. S. I. Gutnikov, et al., Glass Fibers (Moscow State Univ., Moscow, 2010) [in Russian].

    Google Scholar 

  66. Y. V. Lipatov, S. I. Gutnikov, M. S. Manylov, and B. I. Lazoryak, “Effect of ZrO2 on the alkali resistance and mechanical properties of basalt fibers,” Inorg. Mater. 48, 751–756 (2012).

    Article  CAS  Google Scholar 

  67. O. S. Tataritsev, et al., “Effect of thermal treatment on fiber crystallization and properties of basalt fiver,” Polzunovskii Vestn., No. 4-1, 160–164 (2011).

  68. G. P. Ponomareva, O. M. Sladkov, A. A. Artemenko, M. V. Ponomarev, and S. V. Konoplyankin, “Effect of preliminary thermal treatment of basalt tissue on the durability of basalt fiber reinforced polymer,” Materialovedenie, No. 2, 29–32 (2016).

    Google Scholar 

Download references

Funding

This study was carried out with the financial support of the Russian Foundation for Basic Research, project no. 20-11-50046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Kychkin.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Startsev, O.V., Lebedev, M.P. & Kychkin, A.K. Aging of Basalt Plastics in Open Climatic Conditions. Polym. Sci. Ser. D 15, 101–109 (2022). https://doi.org/10.1134/S1995421222010191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421222010191

Keywords:

Navigation