Skip to main content
Log in

Dielectric Characteristics of Structural Organoplastics

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

Organoplastics are multifunctional materials for a wide range of applications. However, their dielectric characteristics are rarely noted: organoplastics are dielectrics, which exhibit a high dielectric strength, specific volume resistance, and a low dielectric loss factor. The level of preservation of the electrophysical characteristics of organoplastics is as good as that of glass–fiber-reinforced plastics under the action of climatic factors; organoplastics exhibit high stability of characteristics after long-duration humidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. G. F. Zhelezina, I. N. Gulyaev, and N. A. Solov’eva, “Aramide organic plastics of new generation for aviation designs,” Aviats. Mater. Tekhnol., No. S, 368–378 (2017).

  2. A. S. Kolobkov, “Polymer composite materials for various aircraft structures (review),” Tr. VIAM, Nos. 6–7, 38–44 (2020).

    Google Scholar 

  3. V. V. Krivonos and Yu. M. Tarasov, “Innovative composite materials and technologies in aircraft construction,” in Composites in CIS: Digitalization and Value Analysis of the Product Life Cycle (Musthavevents, Moscow, 2018), pp. 23–26.

  4. G. F. Zhelezina, N. A. Solovieva, K. V. Makrushin, and L. S. Rysin, “Polymer composite materials for manufacturing engine air particle separation of advanced helicopter engine,” Aviats. Mater. Tekhnol., No. 1, 58–63 (2018).

  5. E. N. Kablov, N. Yu. Podzhivotov, and A. N. Lutsenko, “About need for creation of uniform information and analysis centerof aviation materials of the Russian Federation,” Probl. Mashinostr. Avtom., No. 3, 28–34 (2019).

    Google Scholar 

  6. E. N. Kablov, “New generation materials represent the basis for innovations, technological leadership and national security of Russia,” Intell. Tekhnol., No. 2, 16–21 (2016).

    Google Scholar 

  7. G. F. Zhelezina, S. I. Voinov, N. A. Solov’eva, and G. S. Kulagina, “Aramid textile laminate for shock-resistant elements of aviation constructions,” Russ. J. Appl. Chem. 92 (3), 404–409 (2019).

    Article  CAS  Google Scholar 

  8. G. S. Kulagina, G. F. Zhelezina, I. V. Tikhonov, and M. S. Doriomedov, “Aramid organoplastics, status and prospects,” in Proc. of II Allrus. Sci.-Eng. Conf. “New generation polymer composite materials and manufacturing technologies” (All-Russian Institute of Aviation Materials, Moscow, 2017), pp. 79–91.

  9. P. M. Shul’deshova, G. F. Zhelezina, N. A. Solov’eva, and E. M. Shul’deshov, “Aramide organoplastics for sound-proof designs,” Vopr. Materialoved., No. 4, 42–49 (2016).

  10. M. M. Platonov, E. M. Shul’deshov, T. A. Nesterova, and V. A. Sagomonova, “Acoustic polymeric materials of new generation (review),” Tr. VIAM, No. 4, 9 (2016).

    Google Scholar 

  11. K. A. Shashkeev, E. M. Shul’deshov, O. V. Popkov, I. D. Kraev, and G. Yu. Yurkov, “Porous sound-absorbing materials (review),” Tr. VIAM, No. 6, 6 (2016).

    Article  Google Scholar 

  12. E. M. Shul’deshov, I. D. Kraev, and M. M. Platonov, “Polymeric composition sound absorbing panel,” Tr. VIAM, No. 5, 7 (2017).

    Google Scholar 

  13. M. I. Valueva, “Modern materials and technologies used for body armor,” Vopr. Materialoved., No. 2, 197–207 (2017).

  14. G. S. Kulagina, G. F. Zhelezina, and N. M. Levakova, “Antifriction organoplastics for high-loaded friction knots,” Tr. VIAM, No. 2, 89–96 (2019).

    Article  Google Scholar 

  15. A. S. Agafonova and S. V. Kondrashov, “Features of a technology to manufacture monolithic glass-fiber plastics intended for radio engineering,” Aviats. Mater. Tekhnol., No. 1, 30–33 (2014).

  16. I. D. Kraev, E. M. Shuldeshov, M. M. Platonov, and G. Yu. Yurkov, “Composite materials combining acoustic and radio shielding properties,” Aviats. Mater. Tekhnol., No. 4, 60–67 (2016).

  17. N. E. Uvarova, D. V. Grashchenkov, N. V. Isaeva, L. A. Orlova, and P. D. Sarkisov, “High-temperature radio-transparent materials: Today and tomorrow,” Aviats. Mater. Tekhnol. No. 1, 16–21 (2010).

    Google Scholar 

  18. Yu. A. Mikhailin, Construction Polymeric Composite Materials, 2nd ed. (Nauchnye Osnovy i Tekhnologii, St. Petersburg, 2013) [in Russian].

  19. V. V. Shirokov and A. M. Romanov, “Waveguide method research of honeycomb glass fibre plastics dielectric characteristics,” Aviats. Mater. Tekhnol., No. 4, 62–70 (2013).

  20. A. A. Belyaev, A. M. Romanov, V. V. Shirokov, and E. M. Shul’deshov, “Measurement of honeycomb glass fiber plasticspermittivity in free space,” Tr. VIAM, No. 5, 6 (2014).

    Article  Google Scholar 

  21. E. M. Shul’deshov, V. V. Lepeshkin, and A. M. Romanov, “Method of non-destructive testing of complex dielectric permittivity of input poorly filled layers of gradient radar-absorbing polymeric composite materials,” Tr. VIAM, No. 10, 11 (2014).

    Article  Google Scholar 

  22. V. V. Murashov, “Determination of physico-mechanical characteristics and composition of polymer composites by acoustic methods,” Aviats. Mater. Tekhnol., No. S, 465 (2012).

  23. V. V. Murashov, “Non-destructive testing of carbon-carbon composite material forgings and details for the reusable "Buran” spaceship,” Tr. VIAM, No. 4, 5 (2013).

    Google Scholar 

  24. Chul Kim Po and Gil Lee Dai, “Composite sandwich constructions for absorbing the electromagnetic waves,” Compos. Struct. 87, 161–167 (2009).

    Article  Google Scholar 

  25. A. A. Belyaev, S. V. Kondrashov, V. V. Lepeshkin, and A. M. Romanov, “Radioabsorbing materials,” Aviats. Mater. Tekhnol., No. S, 348–352 (2012).

  26. I. S. Deev, E. N. Kablov, L. P. Kobets, and L. V. Chursova, “The basic and applied research in the field of corrosion and ageing of materials in natural environments (review),” Tr. VIAM, No. 7, 6 (2014).

    Article  Google Scholar 

  27. E. N. Kablov and O. V. Startsev, “The basic and applied research in the field of corrosion and ageing of materials in natural environments (review),” Aviats. Mater. Tekhnol., No. 4, 38–52 (2015).

  28. K. V. Sorokin, V. V. Murashov, M. Yu. Fedotov, and V. A. Goncharov, “Prediction of fault propagation in polymer structures by determining the stiffness changes under the material actuation conditions,” Aviats. Mater. Tekhnol., No. 2, 20–22 (2011).

  29. G. D. Roberts, D. M. Revilock, W. K. Binienda, W. Z. Nie, S. B. Mackenzie, and K. B. Todd, “Impact testing and analysis of composites for aircraft engine fan cases,” J. Aerosp. Eng., No. 15, 104–110 (2002).

  30. V. V. Murashov, A. F. Rumyantsev, G. A. Ivanova, and N. G. Faizrakhmanov, “Diagnostics of the structure, composition, and properties of polymeric composite materials,” Aviats. Mater. Tekhnol., No. 1, 17–24 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Shul’deshova.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shul’deshova, P.M., Zhelezina, G.F., Solov’eva, N.A. et al. Dielectric Characteristics of Structural Organoplastics. Polym. Sci. Ser. D 15, 96–100 (2022). https://doi.org/10.1134/S1995421222010178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421222010178

Keywords:

Navigation