Skip to main content
Log in

A Study of the Durability of Polymer Composites under Static Loads

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

The state of the problem of studying and predicting the long-term strength and durability of polymer composite materials is examined. An original method for load testing for up to three months is proposed, which ensures the destruction of most of the specimens. The method has passed trials and is used in practice for long-term tests of specimens of fiberglass construction reinforcement at temperatures of –30, +23, and +50°C, as well as aircraft plates made of carbon fiberglass. The results of full-scale field tests for up to 17 years are given. Empirical expressions for predicting the long-term strength and durability of building and aviation materials based on glass and carbon plastics are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Encyclopedia of Polymers, Ed. by V. A. Kabanov (Sov. Entsikl., Moscow, 1977), pp. 892–893 [in Russian].

    Google Scholar 

  2. A. N. Blaznov, V. F. Savin, Yu. P. Volkov, A. Ya. Rudol’f, O. V. Startsev, and V. B. Tikhonov, Methods of Mechanical Testing of Composite Rods: Monograph, Ed. by A. N. Blaznov and V. F. Savin (Izd. Altai. Gos. Tekh. Univ., Biysk, 2011) [in Russian].

    Google Scholar 

  3. Long-Term Durability of Polymeric Matrix Composites, Ed. by K. V. Pochiraju, G. P. Tandon, and G. A. Schoeppner (Springer Science+Business Media, LLC, 2012). https://doi.org/10.1007/978-1-4419-9308-3

    Google Scholar 

  4. Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Ed. by M. Jawaid, M. Thariq, and N. Saba (Elsevier Ltd., 2019). https://doi.org/10.1016/C2016-0-04449-2.

  5. Durability of Building Materials and Components, Ed. by M. A. Lacasse and D. J. Vanier (Institute for Research in Construction, Ottawa, ON, 1999), pp. 1382—1391.

  6. GOST (State Standard) 10145–81. Metals. Long-Term Strength Test Technique.

  7. V. A. Petrov and G. V. Petrov, RF Patent No. 2 167 404 (May 20, 2001).

  8. A. M. Skudra, F. Ya. Bulavs, and K. A. Rotsens, Creep and Static Fatigue of Reinforced Plastics (Zinatne, Riga, 1971) [in Russian].

    Google Scholar 

  9. G. L. Zadelova, Doctoral Dissertation in Engineering (Tbilisi, 1969) [in Russian].

  10. L. Fisher, How to Predict Structural Behavior of RP Laminates (Vjdern Plastics, 1960).

    Google Scholar 

  11. G. M. Bartenev, Strength and Failure Mechanisms in Polymers (Khimiya, Moscow, 1984).

    Google Scholar 

  12. Regel’, V.R. Slutsker, A.I., and Tomashevskii, E.E., Kinetic Nature of Strength in Solid Bodies (Nauka, Moscow, 1974).

    Google Scholar 

  13. S. B. Ratner and V. P. Yartsev, Performance of Plastic under Load and Ways of Its Forecast and Increase (Nauchno-Issled. Inst. Tekh.-Ekon. Issled. Khim. Komplekse, Moscow, 1979), Vol. 3 [in Russian].

    Google Scholar 

  14. H. Kausch, Polymer Fracture (Springer Verlag, Berlin, 1978; Mir, Moscow, 1981).

  15. V. A. Petrov, A. Ya. Bashkarev, and V. I. Vettegren’, Physical Basis for Predicting Durability of Structural Materials (Politekhnika, St. Petersburg, 1993) [in Russian].

    Google Scholar 

  16. P. M. Ogibalov, N. I. Malinin, V. P. Netrebko, and B. P. Kishkin, Structural Polymers: Experimental Research Methods, Ed. by P. M. Ogibalov (Mosk. Gos. Univ., Moscow, 1972) [in Russian].

    Google Scholar 

  17. A. Ya. Bashkarev, V. I. Vettegren’, and M. A. Suslov, Durability of Polymer Composites (Izd. Politekh. Univ., St. Petersburg, 2016) [in Russian].

    Google Scholar 

  18. A. Muliana, “Nonlinear viscoelastic-degradation model for polymeric based materials,” Int. J. Solids Struct. 51 (1), 122–132 (2014).

    Article  CAS  Google Scholar 

  19. N. Guermazi, A. Ben Tarjem, I. Ksouri, et al., “On the durability of FRP composites for aircraft structures in hygrothermal conditioning,” Compos. Part B: Eng. 85, 294–304 (2016).

    Article  CAS  Google Scholar 

  20. A. Kootsookos, A. P. Mouritz, and N. A. St. John, Comparison of the seawater durability of carbon- and glass-polymer composites. http://iccm-central.org/Proceedings/ICCM13proceedings/SITE/PAPERS/Paper-1200.pdf.

  21. D. Ndiaye, E. Fanton, S. Morlat-Therias, et al., “Durability of wood polymer composites: 1. Influence of wood on the photochemical properties,” Compos. Sci. Technol. 68 (13), 2779 (2010).

    Article  Google Scholar 

  22. M. Demkowicz, Environmental Durability of Hybrid Braided Polymer Matrix Composites for Infrastructure Applications (2011). https://digitalcommons.library.umaine.edu/etd/1575.

  23. J. Wang, H. GangaRao, R. Liang, et al., “Durability of glass fiber-reinforced polymer composites under the combined effects of moisture and sustained loads,” J. Reinf. Plast. Compos. 34 (21), 1739–1754 (2015). https://doi.org/10.1177/0731684415596846

    Article  CAS  Google Scholar 

  24. J. Jeon, A. Muliana, and V. La Saponara, “Thermal stress and deformation analyses in fiber reinforced polymer composites undergoing heat conduction and mechanical loading,” Compos. Struct. 111, 31–44 (2014). https://doi.org/10.1016/j.compstruct.2013.11.027

    Article  Google Scholar 

  25. A.-H. I. Mourad, A. H. Idrisi, M. C. Wrage, and B. M. Abdel-Magid, “Long-term durability of thermoset composites in seawater environment,” Compos. Part B: Eng., 2019, vol. 168, 243–253.

    Article  CAS  Google Scholar 

  26. Yucheng Zhong, Mingyang Cheng, Xin Zhang, et al., “Hygrothermal durability of glass and carbon fiber reinforced composites—A comparative study,” Compos. Struct. 211, 134–143 (2019).

    Article  Google Scholar 

  27. M. A. Sawpan, A. A. Mamun, and P. G. Holdsworth, “Long term durability of pultruded polymer composite rebar in concrete environment,” Mater. Des. 57, 616–624 (2014).

    Article  CAS  Google Scholar 

  28. A. H. Ali, H. M. Mohamed, B. Benmokrane, et al., “Durability performance and long-term prediction models of sand-coated basalt FRP bars,” Compos. Part B: Eng. 157, 248–258 (2019).

    Article  CAS  Google Scholar 

  29. V. B. Tikhonov, Candidate’s Dissertation in Engineering (Biysk, 2011).

  30. O. V. Startsev, A. N. Blaznov, A. A. Krasnov, and A. S. Krasnova, “Improving the accuracy of determining the mechanical properties of polymer composite materials. 1. Analysis of standardized tensile test methods,” Vse Mater., Entsikl. Sprav., No. 1, 57–67 (2016).

  31. V. F. Savin, A. N. Blaznov, V. B. Tikhonov, and O. V. Startsev, “The study of the mechanical characteristics of composite rods of circular cross section by the method of three-point bending,” Zavod. Lab., Diagn. Mater. 77 (6), 48–51 (2011).

    Google Scholar 

  32. A. Ya. Rudol’f, S. P. Pozdeev, V. F. Savin, A. N. Lugovoi, A. N. Blaznov, O. V. Startsev, V. B. Tikhonov, and M. Yu. Loktev, RF Patent No. 2 451 281 (May 20, 2012).

  33. A. N. Blaznov, O. V. Startsev, and V. F. Savin, “Automated installation for determining the strength and Young’s modulus of elastic rods with longitudinal bending,” Nauchno-Tekh. Vedomosti S.-Peterb. Gos. Pedagog. Univ., No. 1, 202 (2009).

  34. V. B. Tikhonov, A. N. Blaznov, and V. F. Savin, “Method of fiberglass testing for static durability,” Inorg. Mater. 47 (15), 1702–1706 (2011).

    Article  CAS  Google Scholar 

  35. A. V. Markova, V. F. Savin, Y. B. Zharinov, and A. N. Blaznov, “Corrosion resistance tests of strained rods from polymer composite materials,” Inorg. Mater. 47 (15), 1713–1716 (2011).

    Article  CAS  Google Scholar 

  36. Yu. Yu. Fedorov, F. I. Babenko, A. A. Gerasimov, and G. P. Lapii, “The influence of cold climate factors on the mechanical properties of composite rods made of glass and basalt plastic,” Obrab. Met. (Tekhnol. Oborud. Instrum.), No. 2, 56–61 (2012).

  37. V. P. Selyaev, P. V. Selyaev, M. F. Alimov, and I. N. Shabaev, “The study of properties of fiber composites by longitudinal bending,” Reg. Arkhit. Stroit., No. 2, 5–15 (2014).

  38. A. K. Kychkin, V. V. Popov, and A. A. Kychkin, “Climatic resistance of basalt composite reinforcement,” Nauka Obraz., No. 1, 71–74 (2017).

  39. A. V. Gladkikh, I. S. Kurs, and M. G. Kurs, “Analysis of data from full-scale climatic tests, combined with the application of operational factors, of non-metallic materials (review),” Tr. Vseross. Inst. Aviats. Mater., No. 10, 74–82 (2018).

  40. Yu. Yu. Fedorov and F. I. Babenko, “The effect of low temperatures on the behavior of pre-deformed fiberglass,” Plast. Massy, No. 1, 9–11 (2018).

    Google Scholar 

  41. V. F. Savin, M. G. Petrov, A. N. Blaznov, Yu. B. Zharinov, and A. A. Krasnov, “A method for determining the empirical parameters of the equation of durability of composite materials,” Polzunovskii Vestn. 2 (4), 180–185 (2014).

    Google Scholar 

  42. M. G. Petrov, “Assessment of the structural state of composite materials in the process of destruction,” Obrab. Met. (Tekhnol. Oborud. Instrum.), No. 4, 61–67 (2014).

  43. M. G. Petrov, “The role of the binder creep process in the kinetics of fiberglass fracture,” in Fundamental and Applied Materials Science: Proc. XII Int. Sci. School-Conference (Altai. Gos. Tekh. Univ., Barnaul, 2015), pp. 50–66.

  44. M. G. Petrov, “Fundamental studies of strength physics—methodology of longevity prediction of materials under arbitrary thermally and forced effects,” Int. J. Environ. Sci. Educ. 11 (17), 10 211–10 227 (2016).

    Google Scholar 

  45. M. G. Petrov, Strength and Durability of Structural Elements: An Approach Based on Models of a Material as a Physical Medium (Lambert Academic Publishing, Saarbrücken, 2015).

    Google Scholar 

  46. M. G. Petrov, “On damage diagnostics of aircraft structures,” in Proceedings of XIX International Conference on Methods of Aerophysical Research (ICMAR 2018). https://aip-info.org/2FAM-1BANM-8XI93L-SX1X2-0/c. aspx. Accessed Feb. 2, 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Blaznov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Startsev, O.V., Blaznov, A.N., Petrov, M.G. et al. A Study of the Durability of Polymer Composites under Static Loads. Polym. Sci. Ser. D 12, 440–448 (2019). https://doi.org/10.1134/S1995421219040166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421219040166

Keywords:

Navigation