Skip to main content
Log in

The influence of barometric hydrolysis on the glass-transition temperature of oak timber

  • Published:
Polymer Science Series D Aims and scope Submit manuscript

Abstract

Temperature dependences of the dynamic shearing modulus of oak timber Quercus robur subjected to hydrolysis were obtained by dynamic mechanical analysis. A decrease of the timber dynamic shearing modulus and considerable reduction of the glass-transition temperature of its amorphous components complex with an increase of the hydrolysis hardness level were revealed. Suppositions about the nature of the found effects were made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Kurian, G. R. Nair, A. Hussain, and V. Raghavan, “Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review renewable and sustainable,” En. Rev., No. 25, 205 (2013).

    Google Scholar 

  2. A. T. Teleshev, M. P. Koroteev, G. Z. Kaziev, E. E. Nifantiev, O. P. Kronova, and G. V. Malysheva, “A new technology of wood cavitation,” Polym. Sci., Ser. D 5 (3), 219–220 (2012).

    Article  CAS  Google Scholar 

  3. C. Asada, C. Sasaki, Y. Uto, J. Sakafuji, and Y. Nakamura, “Effect of steam explosion pretreatment with ultra-high temperature and pressure on effective utilization of softwood biomass,” Biochem. Eng. J., No. 60, 25 (2012).

    Article  CAS  Google Scholar 

  4. Z. Yu, B. Zhang, F. Yu, G. Xu, and A. Song, “A real explosion: The requirement of steam explosion pretreatment,” Bioresour. Technol., No. 121, 335 (2012).

    Article  CAS  Google Scholar 

  5. D. Fengel and G. Wegener, Wood: Chemistry, Ultrastructure, Reactions (Verlag Kessel, 2003).

    Google Scholar 

  6. B. N. Kuznetsov, A. A. Efremov, G. A. Slashchinin, E. D. Korniets, and L. K. Balakireva, “Catalytic conversion of aspen wood in a stream of superheated steam in the presence of sulfuric acid cobalt, iron and aluminum sulfates,” Khim. Drev., No. 5, 51 (1990).

    Google Scholar 

  7. V. M. Nikitin, Theoretical Foundations of Delignification (Lesnaya Prom-st, Moscow, 1981) [in Russian].

    Google Scholar 

  8. V. T. Erofeev, O. V. Startsev, V. D. Antoshkin, S. S. Gudozhnikov, E. G. Samol’kina, I. V. Boldina, and A. Yu. Makhon’kov, “Assessment of changes in timber strength in wet conditions,” Fundam. Issled., No. 9 (2014).

    Google Scholar 

  9. O. V. Startsev, A. S. Frolov, A. Yu. Makhon’kov, V. T. Erofeev, S. S. Gudozhnikov, and A. S. Krotov, “Parameter estimation of moisture transfer of polymer composites based on wood in the pre-drying stage,” Fundam. Issled., No. 5 (2014).

    Google Scholar 

  10. O. V. Startsev, A. Yu. Makhon’kov, M. V. Molokov, V. T. Erofeev, and S. S. Gudozhnikov, “The study of molecular mobility and the glass transition temperature of polymer composites based on wood by dynamic mechanical spectroscopy,” Fundam. Issled., Nos. 5–6, 1177 (2014).

    Google Scholar 

  11. E. A. Shakhzadyan, Yu. P. Kvachev, and V. S. Papkov, “Temperature transitions in the wood and its components,” Vysokomol. Soedin., Ser. A. 34 (9), 3 (1992).

    CAS  Google Scholar 

  12. E. A. Shakhzadyan, Yu. P. Kvachev, and V. S. Papkov, “Dynamic mechanical properties of some wood species,” Vysokomol. Soedin., Ser. A 36 (8), 1298 (1994).

    CAS  Google Scholar 

  13. Yu. G. Skurydin, Candidate’s Dissertation in Engineering (Barnaul, 2000).

    Google Scholar 

  14. E. M. Skurydina, Candidate’s Dissertation in Engineering (Barnaul, 2006).

    Google Scholar 

  15. O. V. Startsev, B. N. Salin, Y. G. Skuridin, R. M. Utemesov, and A. D. Nasonov, “Physical properties and molecular mobility of new wood composite plastic Thermobalite,” Wood Sci. Technol. 33, 73 (1999).

    Article  CAS  Google Scholar 

  16. R. P. Overend and E. Chornet, “Fractionation of lignocellulosies by steam-aqueous pretreatments,” Philos. Trans. Roy. Soc. London A321 (1561), 523 (1987).

    Article  Google Scholar 

  17. D. V. Filistovich, O. V. Startsev, and A. Ya. Suranov, “Automated installation for dynamic mechanical analysis,” Prib. Tekh. Eksp. 46 (4), 163 (2003).

    Google Scholar 

  18. O. V. Startsev, E. N. Kablov, and A. Yu. Makhon’kov, “Patterns of α-transfer in epoxy bonding of composite materials according to dynamic mechanical analysis,” Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Spets. Vyp. Perspekt. Konstr. Mater. Tekhnol., 104–113 (2011).

    Google Scholar 

  19. D. V. Filistovich, O. V. Startsev, A. A. Kuznetsov, A. S. Krotov, L. I. Anikhovskaya, L. A. Dement’eva, “Effect of moisture on the anisotropy of the dynamic shear modulus of glass-reinforced plastics,” Dokl. Phys. 48 (6), 306 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Startsev.

Additional information

Original Russian Text © O.V. Startsev, Yu.G. Skurydin, E.M. Skurydina, L.T. Startseva, M.V. Molokov, 2016, published in Vse Materialy. Entsiklopedicheskii Spravochnik, 2016, No. 2, pp. 15–21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Startsev, O.V., Skurydin, Y.G., Skurydina, E.M. et al. The influence of barometric hydrolysis on the glass-transition temperature of oak timber. Polym. Sci. Ser. D 9, 346–350 (2016). https://doi.org/10.1134/S1995421216030230

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421216030230

Keywords

Navigation