Skip to main content
Log in

Relationship of Size and Mass Characteristics, Indicators of Metabolism, and Mercury Concentration in the Muscle Tissue of Freshwater Fish from Tropical Vietnam

  • ECOLOGICAL PHYSIOLOGY AND BIOCHEMISTRY OF HYDROBIONTS
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The main chemical composition and content of mercury in the muscles of freshwater fish species Xenentodon cancila, Notopterus notopterus, Anabas testudineus, Channa striata, Ch. gachua, and Clarias batrachus from the Cái River in Southern Vietnam, as well as their body sizes, have been studied. The trend of the more intensive accumulation of mercury, protein, and lipids in the muscle tissue of females when compared with males was revealed. A significant relationship between the content of mercury and body size, as well as the content of mercury and the proportion of protein in the muscles, has not been established in most of the studied individuals. Trophic patterns of mercury accumulation in fish muscles has been confirmed: its content increases from euryphages to zoophages (facultative predators). An exception is the euryphage Clarias batrachus, which surpasses many facultative predators in mercury content. It is shown that individuals of the same species living in the biotopes of the Cái River with different hydrodynamic and hydrochemical conditions differ in weight, length, content of protein, lipids, and mercury in muscle tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Adams, S.M., McLean, R.B., and Parrotta, J.A., Energy partitioning in largemouth bass under conditions of seasonally fluctuating prey availability, Trans. Am. Fish. Soc., 1982, vol. 111, no. 5, p. 549. https://doi.org/10.1577/1548-8659(1982)111%3C549:EPI-LBU%3E2.0.CO;2

    Article  Google Scholar 

  2. Ajsuvakova, O.P., Tinkov, A.A., Aschner, M., et al., Sulfhydryl groups as targets of mercury toxicity, Coord. Chem. Rev., 2020, vol. 417, p. 213343. https://doi.org/10.1016/j.ccr.2020.213343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aldhamin, A.S., Al-Warid, H.S., and Al-Moussawi, A.A., Helminths and their fish hosts as bioindicators of heavy metal pollution: A review, Int. J. Aquat. Sci., 2021, vol. 12, no. 2, p. 3401.

    Google Scholar 

  4. Baturin, G.N., Lobus, N.V., Peresypkin, V.I., and Komov, V.T., Geochemistry of channel drifts of the Kai River (Vietnam) and sediments of its mouth zone, Oceanology, 2014, vol. 54, no. 6, p. 788. https://doi.org/10.1134/S0001437014050026

    Article  Google Scholar 

  5. Boudou, A., Delnomdedieu, M., Georgescauld, D., et al., Fundamental roles of biological barriers in mercury accumulation and transfer in freshwater ecosystems (analysis at organism, organ, cell and molecular levels), Water, Air, Soil Pollut., 1991, vol. 56, no. 1, p. 807. https://doi.org/10.1007/BF00342318

    Article  CAS  Google Scholar 

  6. Brabo, E.S., Santos, E.O., and Faial, K.D., Mercury contamination of fish and exposures of an indigenous community in Para State, Brazil, Environ. Res., 2000, vol. 84, no. 3, p. 197.

    Article  Google Scholar 

  7. Burger, J. and Gochfeld, M., Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season, Sci. Total Environ., 2011, vol. 409, no. 8, p. 1418. https://doi.org/10.1016/j.scitotenv.2010.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Calboli, F.C., Delahaut, V., Deflem, I., et al., Association between Chromosome 4 and mercury accumulation in muscle of the three-spined stickleback (Gasterosteus aculeatus), Evol. Appl., 2021, vol. 14, no. 10, p. 2553. https://doi.org/10.1111/eva.13298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chemagin, A.A., Volosnikov, G.I., Kyrov, D.N., and Liberman, E.L., Heavy metals Hg, Cd, and Pb in the body of sterlet (Acipenser ruthenus L.), the Lower Irtysh River, Vestn. Murm. Gos. Tekh. Univ., 2019, vol. 22, no. 2, p. 225. https://doi.org/10.21443/1560-9278-2019-22-2-225-233

    Article  Google Scholar 

  10. Chen, C.Y., Lai, C.C., Chen, K.S., et al., Total and organic mercury concentrations in the muscles of Pacific albacore (Thunnus alalunga) and bigeye tuna (Thunnus obesus), Mar. Poll. Bull., 2014, vol. 85, no. 2, p. 606. https://doi.org/10.1016/j.marpolbul.2014.01.039

    Article  CAS  Google Scholar 

  11. Crespo-Lopez, M.E., Augusto-Oliveira, M., Lopes-Araújo, A., et al., Mercury: What can we learn from the Amazon?, Environ. Int., 2021, vol. 146, p. 106223. https://doi.org/10.1016/j.envint.2020.106223

    Article  CAS  PubMed  Google Scholar 

  12. Diana, J.S. and Mackay, W.C., Timing and magnitude of energy deposition and loss in the body, liver, and gonads of northern pike (Esox lucius), J. Fish. Res. Board Can., 1979, vol. 36, no. 5, p. 481. https://doi.org/10.1139/f79-071

    Article  Google Scholar 

  13. Ganguly, S., Mahanty, A., Mitra, T., and Mohanty, B.P., Proximate composition and micronutrient profile of different size groups of hilsa Tenualosa ilisha (Hamilton, 1822) from river Ganga, Indian J. Fish., 2017, vol. 64, p. 62. https://doi.org/10.21077/ijf.2017.64.special-issue.76203-09

    Article  Google Scholar 

  14. Golovanova, I.L., Effects of heavy metals on the physiological and biochemical status of fishes and aquatic invertebrates, Inland Water Biol., 2008, vol. 1, p. 93. https://doi.org/10.1007/s12212-008-1014-1

    Article  Google Scholar 

  15. Grieb, T.M., Bowie, G.L., Driscoll, C.T., et al., Factors affecting mercury accumulation in fish in the upper Michigan Peninsula, Environ. Toxicol. Chem., 1990, vol. 9, no. 7, p. 919. https://doi.org/10.1002/etc.5620090710

    Article  CAS  Google Scholar 

  16. Kawabata, F., Mizushige, T., Uozumi, K., et al., Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats, Biosci. Biotechnol. Biochem., 2015, vol. 79, no. 1, p. 109. https://doi.org/10.1080/09168451.2014.951025

    Article  CAS  PubMed  Google Scholar 

  17. Khadse, T.A. and Gadhikar, Y.A., Histological and ultrastructural study of intestine of Asiatic knife fish, Notopterus notopterus, Int. J. Fish. Aquat. Stud., 2017, vol. 5, no. 1, pp. 18–22.

    Google Scholar 

  18. Kostousov, V.G., Adamovich, B.V., Zhukova, A.A., et al., On determination of the permissible fish products removal depending on the productive characteristics of reservoirs, Vestn. Rybokhoz. Nauki, 2019, vol. 6, no. 4, p. 51.

    Google Scholar 

  19. Koukina, S.E. and Lobus, N.V., Relationship between enrichment, toxicity, and chemical bioavailability of heavy metals in sediments of the Cai River estuary, Environ. Monit. Assess., 2020, vol. 192, p. 305. https://doi.org/10.1007/s10661-020-08282-6

    Article  CAS  PubMed  Google Scholar 

  20. Koukina, S.E., Lobus, N.V., Peresypkin, V.I., et al., Abundance, distribution and bioavailability of major and trace elements in surface sediments from the Cai River estuary and Nha Trang Bay (South China Sea, Vietnam), Estuar. Coas-tal Shelf Sci., 2017, vol. 198, p. 450. https://doi.org/10.1016/j.ecss.2016.03.005

    Article  CAS  Google Scholar 

  21. Kumar, P., Prasad, Y., Patra, A.K., and Swarup, D., Levels of cadmium and lead in tissues of freshwater fish (Clarias batrachus L.) and chicken in Western UP (India), Bull. Environ. Contam. Toxicol., 2007, vol. 79, p. 396. https://doi.org/10.1007/s00128-007-9263-y

    Article  CAS  PubMed  Google Scholar 

  22. Lange, T.R., Royals, H.E., and Connor, L.L., Mercury accumulation in largemouth bass (Micropterus salmoides) in a Florida Lake, Arch. Environ. Contam. Toxicol., 1994, vol. 27, no. 4, p. 466. https://doi.org/10.1007/BF00214837

    Article  CAS  PubMed  Google Scholar 

  23. Lima, A.P., Muller, R.C., Sarkis, J.E., et al., Mercury contamination in fish from Santarem, Para, Brazil, Environ. Res., 2000, vol. 83, no. 2, p. 117. https://doi.org/10.1006/enrs.2000.4051

    Article  CAS  Google Scholar 

  24. Lindberg, S.E., Bullock, R., and Ebinhaus, R., Synthesis of progress and uncertainties in attributing the sources of mercury in deposition, AMBIO, 2007, vol. 36, no. 1, p. 19.

    Article  CAS  PubMed  Google Scholar 

  25. Linh, V.T.T., Kiem, D.T., Ngoc, P.H., et al., Coastal sea water quality of Nha Trang bay, Khanh Hoa, Viet Nam, JSOE, 2015, vol. 5, no. 3, p. 123. https://doi.org/10.17265/2159-5879/2015.03.003

    Article  Google Scholar 

  26. Lloret, J., Shulman, G.E., and Love, R.M., Condition and Health Indicators of Exploited Marine Fishes, Oxford: Wiley Blackwell, 2014.

    Google Scholar 

  27. Lobus, N.V., Content of mercury in bottom sediments in South Vietnam water reservoirs, Toksikol. Vestn., 2012, no. 2, p. 41.

  28. Lobus, N.V. and Komov, V.T., Mercury in the muscle tissue of fish in the Central and South Vietnam, Inland Water Biol., 2016, vol. 9, no. 3, p. 319. https://doi.org/10.1134/S1995082916030159

    Article  Google Scholar 

  29. Lobus, N.V., Komov, V.T., and Thanh, N.T.H., Mercury concentration in ecosystem components in water bodies and streams in Khanh Hoa province (Central Vietnam), Water Resour., 2011, vol. 38, no. 6, p. 799. https://doi.org/10.1134/S0097807811060091

    Article  CAS  Google Scholar 

  30. Lobus, N.V., Peresypkin, V.I., Shulga, N.A., et al., Dissolved, particulate, and sedimentary organic matter in the Cai River basin (Nha Trang Bay of the South China Sea), Oceanology, 2015, vol. 55, no. 3, p. 339. https://doi.org/10.1134/S0001437015030121

    Article  Google Scholar 

  31. Madenjian, C.P., Stapanian, M.A., Cott, P.A., et al., Females exceed males in mercury concentrations of burbot Lota lota, Arch. Environ. Contam. Toxicol., 2015, vol. 68, no. 4, p. 678. https://doi.org/10.1007/s00244-015-0131-1

    Article  CAS  PubMed  Google Scholar 

  32. Mao, L., Liu, X., Wang, Z., et al., Trophic transfer and dietary exposure risk of mercury in aquatic organisms from urbanized coastal ecosystems, Chemosphere, 2021, vol. 281, p. 130836. https://doi.org/10.1016/j.chemosphere.2021.130836

    Article  CAS  PubMed  Google Scholar 

  33. Miroshnichenko, D.A. and Flerova, E.A., The experience of growing rainbow trout in high-mountain conditions of South Vietnam: growth and chemical composition of skeletal muscle, Tr. Vseross. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2018, vol. 170, p. 116.

    Google Scholar 

  34. Moiseenko, T.I., Effect of toxic pollution on fish populations and mechanisms for maintaining population size, Russ. J. Ecol., 2010, vol. 41, no. 3, p. 237. https://doi.org/10.1134/S1067413610030070

    Article  CAS  Google Scholar 

  35. Mustafa, Ö.Z., Nutrition and gender effect on body composition of rainbow trout (Oncorhynchus mykiss), J. VetBio Sci. Tech., 2016, vol. 1, no. 1, p. 20.

    Google Scholar 

  36. Nargis, A., Seasonal variation in the chemical composition of body flesh of koi fish Anabas testudineus (Bloch) (Anabantidae: Perciformes), Bangladesh J. Sci. Ind. Res., 2006, vol. 41, no. 43, p. 219. https://doi.org/10.3329/bjsir.v41i3.292

    Article  CAS  Google Scholar 

  37. Nemova, N.N., Biokhimicheskie effekty nakopleniya rtuti u ryby (Biochemical Effects of Mercury Accumulation in Fish), Moscow: Nauka, 2005.

  38. Nemova, N.N., Lysenko, L.A., Meshcheryakova, O.V., and Komov, V.T., Mercury in fish: biochemical indication, Biosfera, 2014, vol. 6, no. 2, p. 176.

    Google Scholar 

  39. Nicoletto, P.F. and Hendricks, A.C., Sexual differences in accumulation of mercury in four species of centrarchid fishes, Can. J. Zool., 1998, vol. 66, no. 4, p. 944.

    Article  Google Scholar 

  40. Paraskiv, A.A., Tereshchenko, N.N., Proskurnin, V.Yu., et al., Accumulation ability of hydrobionts and suspended matter in relation to plutonium radioisotopes in coastal waters (Sevastopol Bay, the Black Sea), Vestn. Tomsk. Gos. Univ., Biol., 2022, no. 60, p. 78. https://doi.org/10.17223/19988591/60/5

  41. Pavlov, D.S. and Zvorykin, D.D., Freshwater fish migrations in Vietnam, in Ekologiya vnutrennikh vod V’etnama (Ecology of Internal Waters of Vietnam), Moscow: KMK, 2014, p. 279.

  42. Payuta, A.A. and Flerova, E.A., Some indicators of metabolism in the muscles, liver, and gonads of pike-perch Sander lucioperca and Sichel Pelecus cultratus from the Gorky Reservoir, J. Ichthyol., 2019, vol. 59, no. 2, p. 225. https://doi.org/10.1134/S0032945219020152

    Article  Google Scholar 

  43. Perrone, P., Spinelli, S., Mantegna, G., et al., Mercury chloride affects band 3 protein-mediated anionic transport in red blood cells: role of oxidative stress and protective effect of olive oil polyphenols, Cells, 2023, vol. 12, p. 424. https://doi.org/10.3390/cells12030424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Perry, D., Shorthose, W.R., Ferguson, D.M., and Thompson, J.M., Methods used in the CRC program for the determination of carcass yield and beef quality, Aust. J. Exp. Agric., 2001, vol. 41, no. 7, p. 953. https://doi.org/10.1071/EA00092

    Article  Google Scholar 

  45. Piras, P., Bella, A., Cossu, M., et al., A representative sampling of tuna muscle for mercury control, Ital. J. Food Saf., 2020, vol. 9, p. 9055. https://doi.org/10.4081/ijfs.2020.9055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rennie, M.D., Purchase, C.F., Lester, N., et al., Lazy males? Bioenergetic differences in energy acquisition and metabolism help to explain sexual size dimorphism in percids, J. Anim. Ecol., 2008, vol. 77, no. 5, p. 916. https://doi.org/10.1111/j.1365-2656.2008.01412.x

    Article  PubMed  Google Scholar 

  47. Samoilov, K.Yu. and Tran Duc Dien, Morphological plasticity and biological patterns of the climbing perch Anabas testudineus from different types of water bodies in Khánh Hòa Province, Vietnam, Inland Water Biol., 2022, vol. 15, no. 3, p. 217. https://doi.org/10.1134/S1995082922020109

    Article  Google Scholar 

  48. Selin, N.E., Global biogeochemical cycling of mercury: a review, Annu. Rev. Environ. Resour., 2009, vol. 34, no. 1, p. 43. https://doi.org/10.1146/annurev.environ.051308.084314

    Article  Google Scholar 

  49. Sonke, J.E., Angot, H., Zhang, Y., et al., Global change effects on biogeochemical mercury cycling, Ambio, 2023, vol. 52, p. 853. https://doi.org/10.1007/s13280-023-01855-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stepanova, I.K. and Komov, V.T., The role of the trophic structure of the ecosystem of water bodies of North-West Russia in the accumulation of mercury in fish, Gidrobiol. Zh., 2004, vol. 40, no. 2, p. 87.

    Google Scholar 

  51. Stolbunov, I.A., Adaptive complexes of morphological and behavioral characteristics of fish from lotic and limnic habitats, in Ekologiya vnutrennikh vod V’etnama (Ecology of Internal Waters of Vietnam), Moscow: KMK, 2014, p. 371.

  52. Stolbunov, I.A. and Pavlov, D.D., Behavioral differences of various ecological groups of roach Rutilus rutilus L. and perch Perca fluviatilis L., J. Ichthyol., 2006, vol. 46, no. 2, p. 213.

    Article  Google Scholar 

  53. Storelli, M.M., Barone, G., Piscitelli, G., and Marcotrigiano, G.O., Mercury in fish: concentration vs. fish size and estimates of mercury intake, Food Addit. Contam., 2007, vol. 24, no. 12, p. 1353. https://doi.org/10.1080/02652030701387197

    Article  CAS  PubMed  Google Scholar 

  54. Tomilina, I.I., Grebenyuk, L.P., Lobus, N.V., and Komov, V.T., Biological effects of contaminated bottom sediments of water bodies in Central and South Vietnam on aquatic organisms, Inland Water Biol., 2016, vol. 9, no. 4 Pp. 413. https://doi.org/10.1134/S1995082916030196

    Article  Google Scholar 

  55. Ullrich, S.M., Tanton, T.W., and Abdrashitova, S.A., Mercury in the aquatic environment: A review of factors affecting methylation, Environ. Sci. Technol., 2001, vol. 31, no. 3, p. 241.

    Article  CAS  Google Scholar 

  56. Watras, C.J., Back, R.C., Halvorsen, S., et al., Bioaccumulation of mercury in pelagic freshwater food webs, Sci. Total Environ., 1998, vol. 219, nos. 2–3, p. 183.

    Article  CAS  PubMed  Google Scholar 

  57. Wiener, J.G., Knights, B.C., and Sandheinreich, M.B., Mercury in soils, lakes and fish in Vojageurs National Park (Minnesota): importance of atmospheric deposition and ecosystem factors, Environ. Sci. Technol., 2006, vol. 40, no. 20, p. 6261. https://doi.org/10.1021/es060822h

    Article  CAS  PubMed  Google Scholar 

  58. Wootton, R.J., Energetics of reproduction, in Fish Energetics, Dordrecht: Springer-Verlag, 1985, p. 231. https://doi.org/10.1007/978-94-011-7918-8_9

  59. Yan, H., Li, Q., Yuan, Z., et al., Research progress of mercury bioaccumulation in the aquatic food chain, China: A review, Bull. Environ. Contam. Toxicol., 2019, vol. 102, p. 612. https://doi.org/10.1007/s00128-019-02629-7

    Article  CAS  PubMed  Google Scholar 

  60. Živković, I., Šolić, M., Kotnik, J., et al., The abundance and speciation of mercury in the Adriatic plankton, bivalves and fish – a review, Acta Adriat., 2017, vol. 58, no. 3, p. 391. https://doi.org/10.32582/aa.58.3.2

    Article  Google Scholar 

  61. Zupo, V., Graber, G., Kamel, S., et al., Mercury accumulation in freshwater and marine fish from the wild and from aquaculture ponds, Environ. Pollut., 2019, vol. 255, p. 112975. https://doi.org/10.1016/j.envpol.2019.112975

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the team of the Russian-Vietnamese Research and Technology Center (Nha Trang, Vietnam) for their help and support during the research.

Funding

This work was carried out with financial support from the State Task of the Ministry of Science and Higher Education, no. 122042700045-3, Assessment of Trophic Migration of Mercury. The reported study was funded by the Yaroslavl State University Program

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Flerova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All studies were conducted in accordance with the principles of biomedical ethics as set out in the 1964 Declarationof Helsinki and its subsequent amendments. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The study was approved by the Ethics Committee of Demidov Yaroslavl State University. Protocol No. 2, dated June 6, 2023.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payuta, A.A., Flerova, E.A., Guldina, D.A. et al. Relationship of Size and Mass Characteristics, Indicators of Metabolism, and Mercury Concentration in the Muscle Tissue of Freshwater Fish from Tropical Vietnam. Inland Water Biol 17, 296–306 (2024). https://doi.org/10.1134/S1995082924020123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082924020123

Keywords:

Navigation