Structural Features of Scales of Baikal Grayling Thymallus baicalensis under Conditions of an Altered Hydrological Regime


The number of circuli between annual scale rings of grayling Thymallus baicalensis Dybowski, 1874 sampled in the Yenisei River in the downstream section of the Krasnoyarsk Hydroelectric Power Station, which does not freeze in winter, have been investigated and compared with populations of grayling from large tributaries of the Yenisei River (Amyl, Kan, Nizhnyaya Tunguska, and Bolshaya Kheta). It has been shown that graylings inhabiting the Yenisei River have a significantly higher (1.5–2.0 times, p < 0.01) number of circuli in the second, third, and fourth annual rings of the scales than in the populations from the tributaries, which corresponds to a higher growth rate of the grayling population in the Yenisei River. An assumption is made about the transition of graylings inhabiting the Yenisei River channel in the lower reaches of the hydroelectric station to a sedentary lifestyle.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Andrianova, A.V., Dynamics of the Yenisei zoobenthos development in the downstream of the Krasnoyarsk Hydroelectric Power Station, Vestn. Tomsk. Gos. Univ., Ser. Biol., 2013, no. 1 (21), p. 74.

  2. 2

    Bilton, H.T. and Robins, G.L., Effects of starvation, feeding, and light period on circulus formation on scales of young sockeye salmon (Oncorhynchus nerka), J. Fish. Board Can., 1971, vol. 28, no. 11, p. 1749.

    Article  Google Scholar 

  3. 3

    Cadrin, S.X., Advances in morphometric identification of fishery stocks, Rev. Fish Biol. Fish., 2000, vol. 10, p. 91.

    Article  Google Scholar 

  4. 4

    Campana, S.E., Chemistry and composition of fish otoliths: pathways, mechanisms and applications, Mar. Ecol.: Prog. Ser., 1999, vol. 188, p. 263.

    CAS  Article  Google Scholar 

  5. 5

    Cheung, C.H.Y., Chaille, P.M., Randall, D.J., et al., The use of scale increment as a means of indicating fish growth and growth impairment, Aquaculture, 2007, vol. 266, nos. 1–4, p. 102.

    Article  Google Scholar 

  6. 6

    Crisp, D.T., Environmental requirements of common riverine European salmonid fish species in fresh water with particular reference to physical and chemical aspects, Hydrobiologia, 1996, vol. 323, p. 201.

    Article  Google Scholar 

  7. 7

    Dgebuadze, Yu.Yu. and Chernova, O.F., Cheshuya kostistykh ryb kak diagnosticheskaya i registriruyushchaya struktura (Teleost Fish Scales As a Diagnostic and Recording Structure), Moscow: KMK, 2009.

  8. 8

    Elsdon, T.S., Wells, B.K., Campana, S.E., et al., Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences, Ann. Rev., 2008, vol. 46, p. 297.

    Google Scholar 

  9. 9

    FGU Eniseirechtrans. Karta reki Enisei ot Krasnoyarskoi GES do ust’ya reki Angara (Map of the Yenisei River from Krasnoyarsk Hydroelectric Power Station to the Mouth of the Angara River), St. Petersburg: Volgo-Balt, 2008.

  10. 10

    Francis, R.I.C.C., Back-calculation of fish length: a critical review, J. Fish. Biol., 1990, vol. 36, no. 6, p. 883.

    Article  Google Scholar 

  11. 11

    Freedman, J.A., Lorson, B.D., Taylor, R.B., et al., River of the dammed: longitudinal changes in fish assemblages in response to dams, Hydrobiologia, 2014, vol. 727, no. 1, p. 19.

    CAS  Article  Google Scholar 

  12. 12

    Gadinov, A.N. and Dolgikh, P.M., Spatial-species structure of ichthyocenosis, relative abundance and factors affecting the distribution of fishes in the Yenisei River, Vestn. Krasnoyarsk. Agrarn. Univ., 2008, no. 3, p. 169.

  13. 13

    Gillespie, B.R., Desmet, S., Kay, P., et al., A critical analysis of regulated river ecosystem responses to managed environmental flows from reservoirs, Freshwater Biol., 2015, vol. 60, no. 2, p. 410.

  14. 14

    Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, no. 1, p. 9.

  15. 15

    Heim, K.C., Wipfli, M.S., Whitman, M.S., et al., Seasonal cues of arctic grayling movement in a small arctic stream: the importance of surface water connectivity, Environ. Biol. Fish., 2016, vol. 99, no. 1, p. 49.

    Article  Google Scholar 

  16. 16

    Hughes, N.F. and Reynolds, J.B., Why do arctic grayling (Thymallus arcticus) get bigger as you go upstream?, Can. J. Fish. Aquat. Sci., 1994, vol. 51, p. 2154.

    Article  Google Scholar 

  17. 17

    Ibáñez, A.L., Britton, J.R., and Cowx, I.G., Relationship between scale growth checks, circuli formation rate and somatic growth in Rutilus rutilus (L.) a fish farm-reared cyprinid, J. Fish. Biol., 2008, vol. 72, p. 1023.

    Article  Google Scholar 

  18. 18

    Ivanova, E.V., Os’kina, N.A., and Zuev, I.V., Indicators of growth and fertility of Siberian grayling Thymallus arcticus (Pallas, 1776) in the middle reaches of the Yenisei River, Vopr. Rybovod., 2015, vol. 16, no. 1, p. 1.

    Google Scholar 

  19. 19

    Knizhin, I.B., Diversity and taxonomic identification of grayling (Thymallus) in the Yenisei River basin, Zh. Sib. Fed. Univ., Ser. Biol., 2011, vol. 4, no. 3, p. 293.

    Google Scholar 

  20. 20

    Knizhin, I.B. and Weiss, S.J., A new species of grayling Thymallus svetovidovi sp. nova (Thymallidae) from the Yenisei basin and its position in the genus Thymallus, J. Ichthyol., 2009, vol. 49, no. 1, p. 1.

    Article  Google Scholar 

  21. 21

    Kosmakov, I.V., Termicheskii i ledovyi rezhim v verkhnikh i nizhnikh b’efakh vysokonapornykh gidroelektrostantsii na Enisee (Thermal and Ice Regime in the Upstream and Downstream of High-Pressure Hydroelectric Power Plants on the Yenisei), Krasnoyarsk: Klaretianum, 2001.

  22. 22

    Liknes, G.A. and Gould, W.R., The distribution, habitat and population characteristics of fluvial arctic grayling (Thymallus arcticus) in Montana, Northwest Sci., 1987, vol. 61, no. 2, p. 122.

    Google Scholar 

  23. 23

    McCartney, M.P., Sullivan, C., and Acreman, M., Ecosystem Impacts of Large Dams, Background Paper 2, Washington: IUCN/UNEP/WCD, United Nations Foundation, 2001.

  24. 24

    Meyer, L., Spawning migration of grayling Thymallus thymallus (L., 1758) in a northern German lowland river, Arch. Hydrobiol., 2001, vol. 152, no. 1, p. 99.

    Article  Google Scholar 

  25. 25

    Nilsson, C., Reidy, C.A., Dynesius, M., and Revenga, C., Fragmentation and flow regulation of the world’s large river systems, Science, 2005, vol. 308, no. 5720, p. 405.

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Northcote, T.G., Comparative biology and management of Arctic and European grayling (Salmonidae, Thymallus), Rev. Fish. Biol. Fish., 1995, vol. 5, no. 2, p. 141.

    Article  Google Scholar 

  27. 27

    Parkinson, D., Philippart, J., and Baras, E., A preliminary investigation of spawning migrations of grayling in a small stream as determined by radio-tracking, J. Fish. Biol., 1999, vol. 55, p. 172.

    Article  Google Scholar 

  28. 28

    Poff, N.L. and Zimmerman, J.K., Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows, Freshwater Biol., 2010, vol. 55, no. 1, p. 194.

    Article  Google Scholar 

  29. 29

    Shadrin, E.N., Feeding of the Siberian grayling Thymallus arcticus (Pallas, 1776), Rybovod. Rybn. Khoz., 2006, no. 8, p. 37.

  30. 30

    Shadrin, E.N. and Ivanova, E.V., Artificial reproduction of Siberian grayling Thymallus arcticus (Pallas, 1776) in a temporary fish breeding complex on the Yenisei and Mana rivers, Rybn. Khoz., 2012, no. 5, p. 83.

  31. 31

    Shmidt, T.S., Mnogoletnie dannye o rezhime i resursakh poverkhnostnykh vod sushi. Tom 1. RSFSR. No. 12. Basseiny Eniseya (bez basseina Angary) i Pyasiny (Long-Term Data on the Regime and Resources of Land Surface Waters, Vol. 1: RSFSR, No. 12: Basins of the Yenisei (without the Angara Basin) and Pyasina Rivers), Leningrad: Gidrometeoizdat, 1985.

  32. 32

    Skorinova, A.V. and Zinov’ev, E.A., On the scleritometric characterization of grayling scales in the Pechora River basin, Vestn. Perm. Univ., Ser. Biol., 2015, no. 4, p. 327.

  33. 33

    Taylor, J.M., Seilheimer, T.S., and Fisher, W.L., Downstream fish assemblage response to river impoundment varies with degree of hydrologic alteration, Hydrobiologia, 2014, vol. 728, no. 1, p. 23.

    Article  Google Scholar 

  34. 34

    Weiss, S., Knizhin, I., Romanov, V., and Kopun, T., Secondary contact between two divergent lineages of grayling Thymallus in the lower Enisey basin and its taxonomic implications, J. Fish. Biol., 2007, vol. 71, p. 371.

    CAS  Article  Google Scholar 

  35. 35

    West, R.L., Smith, M.W., Barber, W.E., et al., Autumn migration and overwintering of Arctic grayling in coastal streams of the Arctic national wildlife refuge, Alaska, Trans. Am. Fish. Soc., 1992, vol. 121, p. 709.<0709:AMA-OOA>2.3.CO;2

    Article  Google Scholar 

  36. 36

    Zotina, T.A., Trofimova, E.A., and Dementyev, D.V., Time-dependent trends of artificial radionuclides in biota of the Yenisei River (Siberia, Russia), J. Environ. Radioact., 2019, vols. 208–209, p. 106028.

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Zuev, I.V., Semenova, E.M., Shulepina, S.P., et al., Feeding of grayling Tymallus sp. in the middle reaches of the Yenisei River, Zh. Sib. Fed. Uninv., Ser. Biol., 2011, vol. 4, no. 3, p. 281.

    Google Scholar 

  38. 38

    Zuev, I.V., Shulepina, S.P., Trofimova, E.A., and Zotina, T.A., Seasonal changes in feeding and relative condition factors of Siberian grayling (Thymallus arcticus) in a stretch of the middle reaches of the Yenisei River, Contemp. Probl. Ecol., 2017, vol. 10, p. 250.

    Article  Google Scholar 

  39. 39

    Zuev, I.V., Trofimova, E.V., and Zotina, T.A., Seasonal variability of length–weight relationships of Arctic grayling (Thymallus arcticus) and Siberian dace (Leuciscus baicalensis) inhabiting the middle reaches of the Yenisei River, Siberia, Russia, Turk. J. Fish. Aquat. Sci., 2019, vol. 19, no. 10, p. 893.

    Article  Google Scholar 

Download references


This study was partly supported by the Russian Foundation for Basic Research and Krasnoyarsk Regional Foundation for the Support of Scientific and Scientific-Technical Activity (2018–2020), project no. 18-44-240003, and budget themes of the Siberian Federal University and the Institute of Biophysics, Siberian Branch, Russian Academy of Sciences

Author information



Corresponding author

Correspondence to I. V. Zuev.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by N. Ruban

Abbreviations: Nc, number of circuli in completed annual rings on the scale; HPS, dam of the Krasnoyarsk hydroelectric power station; TL, total body length; W, body weight.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zuev, I.V., Andrushchenko, P.Y., Chuprov, S.M. et al. Structural Features of Scales of Baikal Grayling Thymallus baicalensis under Conditions of an Altered Hydrological Regime. Inland Water Biol 14, 60–66 (2021).

Download citation


  • number of circuli
  • water temperature
  • growth rate
  • migration