Skip to main content
Log in

Hydrocarbon-Oxidizing Bacteria from Urban Lake Beloye (Moscow): Identification and Phylogenetic Analysis

  • AQUATIC MICROBIOLOGY
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

Cultured hydrocarbon-oxidizing bacteria have been isolated for the first time from bacterioplankton in urban Lake Beloye (Moscow). The taxonomic positions of two bacterial strains (2012B and 2012C) isolated from this lake have been determined. Lipids of the strain 2012B comprise C14:0–C19:0 fatty acids, the most abundant of them being C15:0 (54%), C16:0 (17%), C17:0 (10%), and 10-methyl С18:0 (3.5%). Lipids of the strain 2012C comprise C14:0–C19:0 fatty acids, the most abundant of them being C15:0 (45%), C16:0 (32%), and C17:0 (9%). A phylogenetic analysis of strain 2012B is performed using the nucleotide sequences of the 16S rRNA (KP779654.1) and alkB (KR422620.1) genes and the strain is identified as a typical member of the genus Rhodococcus spp. (Actinobacteria, Nocardiaceae). The combination of molecular identification and analysis of biochemical and physiological properties makes it possible to identify strain 2012B as Rhodococcusqingshengii 2012B. A phylogenetic analysis of strain 2012C is performed using the nucleotide sequences of 16S rRNA (MG966152) and shows the highest identity (99.57%) of strain 2012С with Pseudomonas psychrotolerans and Pseudomonas oryzihabitans

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Akulova, A.Yu., Il’inskii, V.V., Mosharova, I.V., et al., Status of heterotrophic bacterioplankton of coastal areas of lakes Svyatoe and Beloe of the Koskinskii Natural-Historical Park (Moscow) in 2011, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2014, vol. 16, no. 1, p. 1185.

    Google Scholar 

  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., et al., Gapped blast and psi-blast: a new generation of protein database search programs, Nucleic Acids Res., 1997, vol. 25, no. 17, p. 3389.

    Article  CAS  Google Scholar 

  3. van Beilen, J.B. and Funhoff, E.G., Alkane hydroxylases involved in microbial alkane degradation, Appl. Microbiol. Biotechnol., 2007, vol. 74, p. 13.

    Article  Google Scholar 

  4. Bergey, D.H., Krieg, N.R., and Holt, J.G., Bergey’s Manual of Systematic Bacteriology, Baltimore, MD: Williams and Wilkins, 1989, vol. 4, p. 2648.

    Google Scholar 

  5. Brooijmans, R.J.W., Pastink, M.I., and Siezen, R.J., Hydrocarbon-degrading bacteria: the oil-spill clean-up crew, Microb. Biotechnol., 2009, vol. 2, no. 6, p. 587.

    Article  CAS  Google Scholar 

  6. Cameotra, S.S. and Singh, P., Bioremediation of oil sludge using crude biosurfactants, Int. Biodeterior. Biodegrad., 2008, vol. 62, p. 274.

    Article  CAS  Google Scholar 

  7. Chernyavskaya, M.I., El’gammudi, A.A., and Titok, M.A., The primary characteristic of oil-degrading bacteria, Vestn. Beloruss. Gos. Univ., 2012, vol. 2, no. 3, p. 44.

    Google Scholar 

  8. Das, N. and Chandran, P., Microbial degradation of petroleum hydrocarbon contaminants: an overview, Biotechnol. Res. Int, 2011, vol. 2011, p. 13.

    Google Scholar 

  9. Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 1985, vol. 39, p. 783.

    Article  Google Scholar 

  10. Fredriksson, N.J., Hermansson, M., and Wilén, B.-M., The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant, PLoS One, 2013, vol. 8, no. 10.

  11. Hansen, J. and Moller, I., Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone, Anal. Biochem., 1975, vol. 68, p. 87.

    Article  CAS  Google Scholar 

  12. Huber, T., Faulkner, G., and Hugenholtz, P., Bellerophon: a program to detect chimeric sequences in multiple sequence alignments, Bioinformatics, 2004, vol. 20, p. 2317.

    Article  CAS  Google Scholar 

  13. Kimura, M., A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol., 1980, vol. 16, p. 111.

    Article  CAS  Google Scholar 

  14. Kohno, T., Sugimoto, Y., Sei, K., and Mori, K., Design of PCR primers and gene probes for general detection alkane-degrading bacteria, Microbiol. Environ., vol. 17, no. 3, p. 114.

  15. Koksharova, O., Shubert, M., Shestakov, S., and Cerff, R., Genetic and biochemical evidence for distinct key functions of two highly divergent gapdh genes in catabolic and anabolic carbon flow of the cyanobacterium Synechocystis sp., Plant. Mol. Biol., 1998, vol. 36, p. 183.

    Article  CAS  Google Scholar 

  16. Kumar, S., Stecher, G., Li, M., et al., MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, p. 1547.

    Article  CAS  Google Scholar 

  17. Kuznetsov, S.I., Rol’ mikroorganizmov v krugovorote veshchestv v ozerakh (Role of Microorganisms in the Turnover of Substances in Lakes), Moscow: Nauka, 1952.

  18. Kuznetsov, S.I., Mikroflora ozer i ee geokhimicheskaya deyatel’nost' (The Microflora of Lakes and Their Geochemical Activity), Leningrad: Nauka, 1970.

  19. Long, G.R., Ayers, M.A., Callender, E., and Van Metre, P.C., Trends in chemical concentration in sediment cores from three lakes in New Jersey and one lake on Long Island, New York, U.S., in Geological Survey, Water-Res. Inv. Rep., 2003, vol. 02-4272, p. 32.

    Google Scholar 

  20. Mills, A.L., Breule, C., and Colwell, R.R., Enumeration of petroleum-degrading marine and estuarine microorganisms by the most probable number method, Can. J. Microbiol., 1978, vol. 24, p. 552.

    Article  Google Scholar 

  21. Ravikumar, P., Mehmood, M.A., and Somashekar, R.K., Water quality index to determine the surface water quality of Sankey tank and Mallathahalli lake, Bangalore urban district, Karnataka, India, Appl. Water Sci., 2013, vol. 3, no. 1, p. 247.

    Article  CAS  Google Scholar 

  22. Rossolimo, L.L., Morphometry of Kosino lakes, Tr. Limnol. St. Kosine, 1925, no. 2, p. 3.

  23. Safronova, N.A. and Koksharova, O.A., Bakteriya Rhodococcus sp.—potentsial’nyi destruktor detonatsionnykh nanoalmazov, Ross. Nanotekhnol., 2018, nos. 7–8, p. 88.

  24. Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, p. 406.

    CAS  PubMed  Google Scholar 

  25. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  26. Sasser, M., Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101, 2001.

  27. Stackebrandt, E., Molecular taxonomic parameters, Arch. Microbiol., 2011, vol. 32, p. 59.

    Google Scholar 

  28. Wang, Z., Xu, J., Li, Y., et al., Rhodococcus jialingiae sp. nov., an actinobacterium isolated from sludge of a carbendazim wastewater treatment facility, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, p. 378.

    Article  CAS  Google Scholar 

  29. Widmer, F., Seidler, R.J., Gillevet, P.M., et al., A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples, Appl. Environ. Microbiol., 1998, vol. 64, no. 7, p. 2545.

    Article  CAS  Google Scholar 

  30. Xu, J.L., He, J., Wang, Z.C., et al., Rhodococcus qingshengii sp. nov., a carbendazim-degrading bacterium, Int. J. Syst. Evol. Microbiol, 2007, vol. 57, p. 2754.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank R.A. Sidorov (Institute of Plant Physiology, Russian Academy of Sciences) for assistance in determining the fatty acid composition.

Funding

This work was performed as part of the project “Physiological Ecology of Microorganisms of Aquatic Ecosystems” (State Order No. AAAA-A16-116021660041-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Kravzova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Abbreviations: PCR, polymerase chain reaction; HOB, hydrocarbon-oxidizing bacteria

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravzova, T.R., Ilinsky, V.V., Lazebnaya, I.V. et al. Hydrocarbon-Oxidizing Bacteria from Urban Lake Beloye (Moscow): Identification and Phylogenetic Analysis. Inland Water Biol 13, 178–185 (2020). https://doi.org/10.1134/S1995082920020236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082920020236

Keywords:

Navigation