Skip to main content
Log in

Effect of Infection and Injections of Substances of Different Origin on Lysozyme in Cyprinids (Family Cyprinidae) (Review)

  • ECOLOGICAL PHYSIOLOGY AND BIOCHEMISTRY OF HYDROBIONTS
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

This paper provides a review of literature published in 2000–2016 on the responses of lysozyme in cyprinids, which was experimentally obtained based on substances of different origin. Ten species, representing objects of aquaculture, are studied. The effects of pathogenic and parasitic infection, vaccination, and immunization, as well as immunostimulants, including endotoxins, secondary metabolites, components of plant origin, and hormones administered by injection, are considered. The pathogenic challenge of carp Cyprinus carpio L. by Aeromonas hydrophila (Chester) shows multidirectional changes and their absence in the activity of lysozyme. The parasitic infection of different fish species usually has an immunosuppressive effect. Vaccination and immunization increase serum lysozyme activity, which is 7–8 times higher than that in the control fish. However, the immune responses differ in time and depend on some factors, including the structure of the active substance and composition of the vaccine. Most immunostimulants contribute to different growths in the activity and content of lysozyme in carp serum and organs. Immune responses can reverse, depending on the dose of the active substance. The diversity of units of lysozyme activity makes it difficult to systematize immune responses even within a single fish species. The range of variation in the serum lysozyme activity of Cyprinus carpio and Labeo rohita (Hamilton) is very wide in studies conducted by different researchers, which probably cannot correspond to adequate physiological values. There are data indicating the highest mortality among experimental fish that have the highest serum lysozyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abasali, H. and Mohamad, S., Immune response of common carp (Cyprinus carpio) fed with herbal immunostimulants diets, Agric. J., 2010, vol. 5, no. 3, p. 163. https://doi.org/10.1111/j.1365-2109.2007.01660.x

    Article  CAS  Google Scholar 

  2. Alexander, C., Sahu, N.P., Pal, A.K., et al., Haemato-immunological and stress responses of Labeo rohita (Hamilton) fingerlings: effect of rearing temperature and dietary gelatinized carbohydrate, J. Anim. Physiol. Anim. Nutrit., 2011, vol. 95, no. 5, p. 653. https://doi.org/10.1111/j.1439-0396.2010.01096.x

    Article  CAS  Google Scholar 

  3. Ardo, L., Jeney, Z., Adams, A., et al., Immune responses of resistant and sensitive common carp families following experimental challenge with Aeromonas hydrophila,Fish Shellfish Immunol., 2010, vol. 29, no. 1, p. 111. https://doi.org/10.1016/j.fsi.2010.02.029

    Article  CAS  PubMed  Google Scholar 

  4. Baruah, A., Saha, R.K., and Kamilya, D., Interspecies transmission of the epizootic ulcerative syndrome (EUS) pathogen, Aphanomyces invadans, and associated physiological responses, Bamidgeh, 2012, vol. 64, p. 9.

    Google Scholar 

  5. Behera, T. and Swain, P., Antigen adsorbed surface modified poly-ε-caprolactone microspheres stimulates both adaptive and innate immune response in fish, Vaccine, 2012, vol. 30, no. 35, p. 5278. https://doi.org/10.1016/j.vaccine.2012.05.028

    Article  CAS  PubMed  Google Scholar 

  6. Behera, T. and Swain, P., Alginate-chitosan-PLGA composite microspheres induce both innate and adaptive immune response through parenteral immunization in fish, Fish Shellfish Immunol., 2013, vol. 35, no. 3, p. 785. https://doi.org/10.1016/j.fsi.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  7. Behera, T. and Swain, P., Antigen encapsulated alginate-coated chitosan microspheres stimulate both innate and adaptive immune responses in fish through oral immunization, Aquacult. Int., 2014, vol. 22, no. 2, p. 673. https://doi.org/10.1007/s10499-013-9696-8

    Article  CAS  Google Scholar 

  8. Betoulle, S., Etienne, J.C., and Vernet, G., Acute immunotoxicity of gallium to carp (Cyprinus carpio L.), Bull. Environ. Contam. Toxicol., 2002, vol. 68, no. 6, p. 817. https://doi.org/10.1007/s00128-002-0028-3

    Article  CAS  PubMed  Google Scholar 

  9. Bols, N.C., Brubacher, J.L., Ganassin, R.C., et al., Ecotoxicology and innate immunity in fish, Dev. Comp. Immunol., 2001, vol. 25, nos. 8–9, p. 853. https://doi.org/10.1016/s0145-305x(01)00040-4

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Y., Zhu, X., Yang, Y., et al., Effect of dietary lysozyme on growth, immune response, intestine microbiota, intestine morphology and resistance to Aeromonas hydrophilia in gibel carp (Carassius auratus gibelio), Aquacult. Nutr., 2014, vol. 20, no. 3, p. 229. https://doi.org/10.1111/anu.12069

    Article  CAS  Google Scholar 

  11. Das, B.K., Pradhan, J., and Sahu, S., The effect of Euglena viridis on immune response of rohu, Labeo rohita (Ham.), Fish Shellfish Immunol., 2009, vol. 26, no. 6, p. 871. https://doi.org/10.1016/j.fsi.2009.03.016

    Article  CAS  PubMed  Google Scholar 

  12. Das, B.K., Pradhan, J., Sahu, S., et al., Microcystis aeruginosa (Kutz) incorporated diets increase immunity and survival of Indian major carp Labeo rohita (Ham.) against Aeromonas hydrophila infection, Aquacult. Res., 2013, vol. 44, no. 6, p. 918. https://doi.org/10.1111/j.1365-2109.2012.03098.x

    Article  CAS  Google Scholar 

  13. Das, R., Raman, R.P., Saha, H., et al., Effect of Ocimum sanctum Linn. (Tulsi) extract on the immunity and survival of Labeo rohita (Hamilton) infected with Aeromonas hydrophila,Aquacult. Res., 2015, vol. 46, no. 5, p. 1111. https://doi.org/10.1111/are.12264

    Article  CAS  Google Scholar 

  14. Dash, S., Das, S.K., Samal, J., et al., Dose dependence specific and non-specific immune responses of indian major carp (L. rohita Ham) to intraperitoneal injection of formalin killed Aeromonas hydrophila whole cell vaccine, Vet. Res. Commun., 2011, vol. 35, no. 8, p. 541. https://doi.org/10.1007/s11259-011-9498-2

    Article  PubMed  Google Scholar 

  15. Dautremepuits, C., Betoulle, S., Paris-Palacios, S., et al., Humoral immune factors modulated by copper and chitosan in healthy or parasitised carp (Cyprinus carpio L.) by Ptychobothrium sp. (Cestoda), Aquat. Toxicol., 2004, vol. 68, no. 4, p. 325. https://doi.org/10.1016/j.aquatox.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  16. Devi, T.B., Kamilya, D., and Abraham, T.J., Dynamic changes in immune-effector activities of Indian major carp, catla (Catla catla) infected with Edwardsiella tarda,Aquaculture, 2012, vols. 366-367, no. 5, p. 62. https://doi.org/10.1016/j.aquaculture.2012.09.002

    Article  CAS  Google Scholar 

  17. Fatima, M., Mandiki, S.N.M., Douxfils, J., et al., Combined effects of herbicides on biomarkers reflecting immune-endocrine interactions in goldfish. Immune and antioxidant effects, Aquat. Toxicol., 2007, vol. 81, no. 2, p. 159. https://doi.org/10.1016/j.aquatox.2006.11.013

    Article  CAS  PubMed  Google Scholar 

  18. Fawole, F.J., Sahu, N.P., Pal, A.K., et al., Haemato-immunological response of Labeo rohita (Hamilton) fingerlings fed leaf extracts and challenged by Aeromonas hydrophila,Aquacult. Res., 2016, vol. 47, no. 12, p. 3788. https://doi.org/10.1111/are.12829

    Article  CAS  Google Scholar 

  19. Harikrishnan, R., Balasundaram, C., Kim, M.-C., et al., Innate immune response and disease resistance in Carassius auratus by triherbal solvent extracts, Fish Shellfish Immunol., 2009a, vol. 27, no. 3, p. 508. https://doi.org/10.1016/j.fsi.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  20. Harikrishnan, R., Balasundaram, C., Dharaneedharan, S., et al., Effect of plant active compounds on immune response and disease resistance in Cirrhina mrigala infected with fungal fish pathogen, Aphanomyces invadans,Aquacult. Res., 2009b, vol. 40, no. 10, p. 1170. https://doi.org/10.1111/j.1365-2109.2009.02213.x

    Article  CAS  Google Scholar 

  21. Harikrishnan, R., Balasundaram, C., and Heo, M.-S., Herbal supplementation diets on hematology and innate immunity in goldfish against Aeromonas hydrophila,Fish Shellfish Immunol., 2010, vol. 28, no. 2, p. 354. https://doi.org/10.1016/j.fsi.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, X., Zhang, C., Zhao, Y., et al., Immune effects of the vaccine of live attenuated Aeromonas hydrophila screened by rifampicin on common carp (Cyprinus carpio L.), Vaccine, 2016, vol. 34, no. 27, p. 3087. https://doi.org/10.1016/j.vaccine.2016.04.075

    Article  CAS  PubMed  Google Scholar 

  23. Jin, Y., Tian, L., Zeng, S., et al., Dietary lipid requirement on non-specific immune responses in juvenile grass carp (Ctenopharyngodon idella), Fish Shellfish Immunol., 2013, vol. 34, no. 5, p. 1202. https://doi.org/10.1016/j.fsi.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  24. Kar, B., Mohanty, J., Hemaprasanth, K.P., et al., The immune response in rohu, Labeo rohita (Actinopterygii: Cyprinidae) to Argulus siamensis (Branchiura: Argulidae) infection: kinetics of immune gene expression and innate immune response, Aquacult. Res., 2015, vol. 46, no. 6, p. 1292. https://doi.org/10.1111/are.12279

    Article  CAS  Google Scholar 

  25. Kozinska, A. and Guz, L., The effect of various Aeromonas bestiarum vaccines on non-specific immune parameters and protection of carp (Cyprinus carpio L.), Fish Shellfish Immunol., 2004, vol. 16, no. 3, p. 437. https://doi.org/10.1016/j.fsi.2003.08.003

    Article  CAS  PubMed  Google Scholar 

  26. Kumar, V., Sahu, N.P., Pal, A.K., et al., Immunomodulation of Labeo rohita juveniles due to dietary gelatinized and non-gelatinized starch, Fish Shellfish Immunol., 2007, vol. 23, no. 2, p. 341. https://doi.org/10.1016/j.fsi.2006.11.008

    Article  CAS  PubMed  Google Scholar 

  27. Kumar, R., Mukherjee, S.C., Ranjan, R., et al., Effect of dietary supplementation of Bacillus subtilis on haematological and immunological parameters of Catla catla (Hamilton), Aquacult. Int., 2015, vol. 23, no. 5, p. 1275.

    Article  CAS  Google Scholar 

  28. Kurovskaya, L.Ya. and Stril’ko, G.A., Effect of aquatic environment pH on the level of ectoparasite infestation, protein and lysozyme content in some cyprinid species (Cyprinidae), Ribogospodars’ka Nauka Ukraini, 2016, vol. 1, no. 35, p. 88. https://doi.org/10.15407/fsu2016.01.088

    Article  Google Scholar 

  29. Liu, J., Lei, Y., Wang, F., et al., Immunostimulatory activities of specific bacterial secondary metabolite of Anoxybacillus flavithermus strain SX-4 on carp, Cyprinus carpio,J. Appl. Microbiol., 2011, vol. 110, no. 4, p. 1056. https://doi.org/10.1111/j.1365-2672.2011.04963.x

    Article  CAS  PubMed  Google Scholar 

  30. Liu, B., Ge, X., Xie, J., et al., Effects of anthraquinone extract from Rheum officinale Bail on the physiological responses and HSP70 gene expression of Megalobrama amblycephala under Aeromonas hydrophila infection, Fish Shellfish Immunol., 2012, vol. 32, no. 1, p. 1. https://doi.org/10.1016/j.fsi.2011.02.015

    Article  CAS  PubMed  Google Scholar 

  31. Maqsood, S., Samoon, M.H., and Singh, P., Immunomodulatory and growth promoting effect of dietary levamisole in Cyprinus carpio fingerlings against the challenge of Aeromonas hydrophila, Turk. J. Fish. Aquat. Sci., 2009, 2009, vol. 9, no. 1, p. 111.

  32. Misra, C.K., Das B.K., Mukherjee, S.C., et al., Effect of multiple injections of β-glucan on non-specific immune response and disease resistance in Labeo rohita fingerlings, Fish Shellfish Immunol., 2006a, vol. 20, no. 3, p. 305. https://doi.org/10.1016/j.fsi.2005.05.007

    Article  CAS  PubMed  Google Scholar 

  33. Misra, S., Sahu, N.P., Pal, A.K., et al., Pre- and post-challenge immuno-haematological changes in Labeo rohita juveniles fed gelatinised or non-gelatinised carbohydrate with n-3 PUFA, Fish Shellfish Immunol., 2006b, vol. 21, no. 4, p. 346. https://doi.org/10.1016/j.fsi.2005.12.010

    Article  CAS  PubMed  Google Scholar 

  34. Mohammadian, T., Alishahi, M., Tabandeh, M.R., et al., Probiotic effects of Lactobacillus plantarum and L. delbrueckii ssp. bulguricus on some immune-related parameters in Barbus grypus,Aquacult. Int., 2016, vol. 24, no. 1, p. 225. https://doi.org/10.1007/s10499-015-9921-8

    Article  Google Scholar 

  35. Mohanty, B.R. and Sahoo, P.K., Immune responses and expression profiles of some immune-related genes in Indian major carp, Labeo rohita to Edwardsiella tarda infection, Fish Shellfish Immunol., 2010, vol. 28, no. 4, p. 613. https://doi.org/10.1016/j.fsi.2009.12.025

    Article  CAS  PubMed  Google Scholar 

  36. Mohanty, B.R., Sahoo, P.K., Mahapatra, K.D., et al., Innate immune responses in families of Indian major carp, Labeo rohita, differing in their resistance to Edwardsiella tarda infection, Curr. Sci. India, 2007, vol. 92, no. 9, p. 1270. https://doi.org/10.1016/j.aquaculture.2004.06.008

    Article  CAS  Google Scholar 

  37. Nayak, A.K., Das, B.K., Kohli, M.P.S., et al., The immunosuppressive effect of α-permethrin on Indian major carp, rohu (Labeo rohita Ham.), Fish Shellfish Immunol., 2004, vol. 16, no. 1, p. 41. https://doi.org/10.1016/S1050-4648(03)00029-9

    Article  CAS  PubMed  Google Scholar 

  38. Nayak, S.K., Swain, P., Nanda, P.K., et al., Effect of endotoxin on the immunity of Indian major carp, Labeo rohita,Fish Shellfish Immunol., 2008, vol. 24, no. 4, p. 394. https://doi.org/10.1016/j.fsi.2007.09.005

    Article  CAS  PubMed  Google Scholar 

  39. Qi, X-Z., Li, D-L., Tu, X., et al., Preliminary study on the relationship between dexamethasone and pathogen susceptibility on crucian carp (Carassius auratus), Fish Shellfish Immunol., 2016, vol. 48, p. 79. https://doi.org/10.1016/j.fsi.2016.10.017

    Article  CAS  Google Scholar 

  40. Raa, J., The use of immunostimulatory substances in fish and shellfish farming, Rev. Fish. Sci., 1996, vol. 4, no. 3, p. 229. https://doi.org/10.1080/10641269609388587

    Article  Google Scholar 

  41. Sahoo, P.K., Mahapatra, K.D., Saha, J.N., et al., Family association between immune parameters and resistance to Aeromonas hydrophila infection in the Indian major carp, Labeo rohita,Fish Shellfish Immunol., 2008, vol. 25, nos. 1–2, p. 163. https://doi.org/10.1016/j.fsi.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  42. Sahu S., Das, B.K., Mishra, B.K., et al., Effect of Allium sativum on the immunity and survival of Labeo rohita infected with Aeromonas hydrophila,J. Appl. Ichthyol., 2007, vol. 23, no. 1, p. 80. https://doi.org/10.1111/j.1439-0426.2006.00785.x

    Article  CAS  Google Scholar 

  43. Sahu S., Das, B.K., Mishra, B.K., et al., Effect of dietary Curcuma longa on enzymatic and immunological profiles of rohu, Labeo rohita (Ham.), infected with Aeromonas hydrophila,Aquacult. Res., 2008, vol. 39, no. 16, pp. 1720–1730. https://doi.org/10.1111/j.1365-2109.2008.02048.x

    Article  CAS  Google Scholar 

  44. Saikia, D. and Kamilya, D., Immune responses and protection in catla (Catla catla) vaccinated against epizootic ulcerative syndrome, Fish Shellfish Immunol., 2012, vol. 32, no. 2, p. 353. https://doi.org/10.1016/j.fsi.2011.11.030

    Article  CAS  PubMed  Google Scholar 

  45. Saurabh, S. and Sahoo, P.K., Lysozyme: an important defence molecule of fish innate immune system, Aquacult. Res., 2008, vol. 39, no. 3, p. 223. https://doi.org/10.1111/j.1365-2109.2007.01883.x

    Article  CAS  Google Scholar 

  46. Saurabh, S., Sahoo, P.K., Mohanty, B.R., et al., Modulation of the innate immune response of rohu Labeo rohita (Hamilton) by experimental freshwater lice Argulus siamensis (Wilson) infection, Aquacult. Res., 2010, vol. 41, no. 9, p. 326. https://doi.org/10.1111/j.1365-2109.2010.02538.x

    Article  CAS  Google Scholar 

  47. Sen, S.S., Giri, S.S., and Sukumaran, V., Immune responses and protection in rohu vaccinated against Aeromonas hydrophila infection, Aquacult. Int., 2014, vol. 22, no. 5, p. 1637. https://doi.org/10.1007/s10499-014-9770-x

    Article  CAS  Google Scholar 

  48. Shariff, M., Jayawandena, P.A.H.L., Yusoff, F.M., et al., Immunological parameters of Javanese carp Puntius gonionotus (Bleeker) exposed to copper and challenged with Aeromonas hydrophila, Fish Shellfish Immunol., vol. 11, no. 4, p. 281. https://doi.org/10.1006/fsim.2000.0309

  49. Sharma, A., Deo, A.D., Riteshkumar, S.T., et al., Effect of Withania somnifera (L. Dunal) root as a feed additive on immunological parameters and disease resistance to Aeromonas hydrophila in Labeo rohita (Hamilton) fingerlings, Fish Shellfish Immunol., 2010, vol. 29, no. 3, p. 508. https://doi.org/10.1016/j.fsi.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  50. Siwicki, A. and Studnicka, M., The phagocytic ability of neutrophils and serum lysozyme activity in experimentally infected carp, Cyprinus carpio L, J. Fish. Biol., 1987, vol. 31, suppl. A, p. 57. https://doi.org/10.1111/j.1095-8649.1987.tb05293.x

  51. Siwicki, A.K., Cossarini-Dunier, M., Studnicka, M., et al., In vivo effect of the organophosphorus insecticide trichlorphon on immune response of carp (Cyprinus carpio). II. Effect of high doses of trichlorphon on nonspecific immune response, Ecotoxicol. Environ. Saf., 1990, vol. 19, no. 1, p. 99.

    Article  CAS  Google Scholar 

  52. Skouras, A., Lang, T., Vobach, M., et al., Assessment of some innate immune responses in dab (Limanda limanda L.) from the North Sea as part of an integrated biological effects monitoring, Helgoland Mar. Res., 2003, vol. 57, no. 3, p. 181. https://doi.org/10.1007/s10152-003-0143-5

    Article  Google Scholar 

  53. Sun, J., Wang, Q., Qiao, Z., et al., Effect of lipopolysaccharide (LPS) and outer membrane protein (OMP) vaccines on protection of grass carp (Ctenopharyngodon idella) against Aeromonas hydrophila,Bamidgeh, 2011, vol. 63, p. 8.

    Google Scholar 

  54. Swain, P., Nayak, S.K., Nanda, P.K., et al., Biological effects of bacterial lipopolysaccharide (endotoxin) in fish: a review, Fish Shellfish Immunol., 2008, vol. 25, no. 3, p. 191. https://doi.org/10.1016/j.fsi.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  55. Tassakka, A.C.M.A.R. and Sakai, M., CPG oligodeoxynucleotides enhance the non-specific immune responses on carp, Cyprinus carpio,Aquaculture, 2002, vol. 209, nos. 1–4, p. 1. https://doi.org/10.1016/S0044-8486(01)00764-5

    Article  CAS  Google Scholar 

  56. Thilagam, H., Gopalakrishnan, S., Bo, J., et al., Effect of 17 β-estradiol on the immunocompetence of Japanese sea bass (Lateolabrax japonicus), Environ. Toxicol. Chem., 2009, vol. 28, no. 8, p. 1722. https://doi.org/10.1897/08-642.1

    Article  CAS  PubMed  Google Scholar 

  57. Tort, L., Balasch, J.C., and Mackenzie, S., Fish immune system. A crossroads between innate and adaptive responses, Immunologia, 2003, vol. 22, no. 3, p. 277.

    Google Scholar 

  58. Vainikka, A., Jokinen, E.I., Kortet, R., et al., Effects of testosterone and β-glucan on immune functions in tench, J. Fish. Biol., 2005, vol. 66, no. 2, p. 348. https://doi.org/10.1111/j.0022-1112.2005.00598.x

    Article  CAS  Google Scholar 

  59. Wang, W.B., Li, A.H., Cai, T.Z., et al., Effects of intraperitoneal injection of cortisol on non-specific immune functions of Ctenopharyngodon idella,J. Fish. Biol., 2005, vol. 67, no. 3, p. 779. https://doi.org/10.1111/j.0022-1112.2005.00779.x

    Article  CAS  Google Scholar 

  60. Wang, G.-X., Liu, Y.-T., Li, F.-Y., et al., Immunostimulatory activities of Bacillus simplex DR-834 to carp (Cyprinus carpio), Fish Shellfish Immunol., 2010, vol. 29, no. 3, p. 378. https://doi.org/10.1016/j.fsi.2010.03.014

    Article  CAS  PubMed  Google Scholar 

  61. Wang, G.-X., Wang, Y., Wu, Z.-F., et al., Immunomodulatory effects of secondary metabolites from thermophilic Anoxybacillus kamchatkensis XA-1 on carp, Cyprinus carpio,Fish Shellfish Immunol., 2011a, vol. 30, no. 6, p. 1331. https://doi.org/10.1016/j.fsi.2011.03.011

    Article  CAS  PubMed  Google Scholar 

  62. Wang, G.-X., Li, F.-Y., Cui, J., et al., Immunostimulatory activities of a decapeptide derived from Alcaligenes faecalis FY-3 to crucian carp, Scand. J. Immunol., 2011b, vol. 74, no. 1, p. 14. https://doi.org/10.1111/j.1365-3083.2011.02533.x

    Article  CAS  PubMed  Google Scholar 

  63. Wang, N., Yang, Z., Zang, M., et al., Identification of omp38 by immunoproteomic analysis and evaluation as a potential vaccine antigen against Aeromonas hydrophila in Chinese breams, Fish Shellfish Immunol., 2013, vol. 34, no. 1, p. 74. https://doi.org/10.1016/j.fsi.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  64. Watanuki, H., Chakraborty, G., Korenaga, H., et al., Immunostimulatory effects of natural human interferon-alpha (huIFN-α) on carps Cyprinus carpio L., Vet. Immunol. Immunop., 2009, vol. 131, nos. 3–4, p. 273. https://doi.org/10.1016/j.vetimm.2009.04.005

    Article  CAS  Google Scholar 

  65. Wu, Z.X., Pang, S.F., Liu, J.J., et al., Coriolus versicolor polysaccharides enhance the immune response of crucian carp (Carassius auratus gibelio) and protect against Aeromonas hydrophila,J. Appl. Ichthyol., 2013, vol. 29, no. 3, p. 562. https://doi.org/10.1111/jai.12105

    Article  CAS  Google Scholar 

  66. Yang, X., Guo, J.L., Ye, J.Y., et al., The effects of Ficus carica polysaccharide on immune response and expression of some immune-related genes in grass carp, Ctenopharyngodon idella, Fish Shellfish Immunol., 2015, vol. 42, no. 1, p. 132.https://doi.org/10.1016/j.fsi.2014.10.037

  67. Yin, G., Ardo, L., Thompson, K.D., et al., Chinese herbs (Astragalus radix and Ganoderma lucidum) enhance immune response of carp, Cyprinus carpio, and protection against Aeromonas hydrophila,Fish Shellfish Immunol., 2009, vol. 26, no. 1, p. 140. https://doi.org/10.1016/j.fsi.2008.08.015

    Article  PubMed  Google Scholar 

  68. Zhang, L., Ma, J., Fan, Y., et al., Immune response and protection in gibel carp, Carassius gibelio, after vaccination with β-propiolactone inactivated cyprinid herpesvirus 2, Fish Shellfish Immunol., 2016, vol. 49, p. 344. https://doi.org/10.1016/j.fsi.2016.01.003

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was performed under State Assignment no. AAAA-A18-118012690222-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Subbotkin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subbotkin, M.F., Subbotkina, T.A. Effect of Infection and Injections of Substances of Different Origin on Lysozyme in Cyprinids (Family Cyprinidae) (Review). Inland Water Biol 13, 297–307 (2020). https://doi.org/10.1134/S1995082920020133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082920020133

Keywords:

Navigation