Skip to main content
Log in

Effect of Roundup on the Activities of Glycosidase in the Intestines of Typical and Facultative Ichthyophages as a Function of Temperature and pH

  • ECOLOGICAL PHYSIOLOGY AND BIOCHEMISTRY OF HYDROBIONTS
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

In vitro studies of the effect of the herbicide Roundup (25 µg/L) on the activity of glycosidases that hydrolyze starch in the intestinal mucosa and chyme of typical (pike Esox lucius L., zander Sander lucioperca (L.), and wels catfish Silurus glanis L.) and facultative (common perch Perca fluviatilis L. and burbot Lota lota (L.)) ichthyophages have revealed the dependence of the strength and direction of its effect on the fish species, as well as on the localization of enzymes, temperature, and pH. The greatest inhibitory effect of Roundup on the glycosidase activity of intestinal mucosa and chyme was demonstrated at acidic pH levels. The decrease in temperature at neutral pH level, as a rule, eliminates the inhibitory effect of Roundup on the glycosidases of intestinal mucosa, although the inhibitory effect increases at acidic pH levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Annett, R., Habibi, H.R., and Hontela, A., Impact of glyphosate and glyphosate-based herbicide on freshwater environment, J. Appl. Toxicol., 2014, vol. 34, no. 5, p. 458.

    Article  CAS  Google Scholar 

  2. Aparicio, V.C., De Geronimo, E., Marino, D., et al., Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins, Chemosphere, 2013, vol. 93, no. 9, p. 1866.

    Article  CAS  Google Scholar 

  3. Benbrook, C.M., Trends in glyphosate herbicide use in the united states and globally, Environ. Sci. Eur., 2016, vol. 28, no. 3, p. 1.

    Article  CAS  Google Scholar 

  4. De Moura, F.R., Brentegani, K.R., Gemelli, A., et al., Oxidative stress in the hybrid fish jundiara (Leiarius marmoratus x Pseudoplatystoma reticulatum) exposed to Roundup Original®, Chemosphere, 2017, vol. 185, p. 445.

    Article  Google Scholar 

  5. Filho, J.D.S., Sousa, C.C.N., Da, SilvaC.C., et al., Mutagenicity and genotoxicity in gill erythrocyte cells of Poecilia reticulata exposed to a glyphosate formulation, Bull. Environ. Contam. Toxicol., 2013, vol. 91, no. 5, p. 583.

    Article  Google Scholar 

  6. Gholami-Seyedkolaei, S.J., Mirvaghefi, A., Farahmand, H., and Asghar, Kosari A., Optimization of recovery patterns in common carp exposed to roundup using response surface methodology: evaluation of neurotoxicity and genotoxicity effects and biochemical parameters, Ecotoxicol. Environ. Saf., 2013, vol. 98, p. 152.

    Article  CAS  Google Scholar 

  7. Giesy, J.P., Dobson, S., and Solomon, K.R., Ecotoxicological risk assessment for roundup herbicide, Rev. Environ. Contam. Toxicol., 2000, vol. 167, p. 35.

    CAS  Google Scholar 

  8. Gill, J.P.K., Sethi, N., Mohan, A., et al., Glyphosate toxicity for animals, Environ. Chem. Lett., 2018, vol. 16, no. 2, p. 401.

    Article  CAS  Google Scholar 

  9. Golovanova, I.L. and Aminov, A.I., The effect of herbicide Roundup on glycosidase activity in the intestines of fishes of different ecological groups, in Materialy IV Vserossiiskoi konferentsii po vodnoi ekotoksikologiiAntropogennoe vliyanie na vodnye organizmy i ekosistemy “ (Proc. IV All-Russia Conf. on Aquatic Ecotoxicology “Anthropogenic Impact on Aquatic Organisms and Ecosystems). Borok, 2011, part 1, p. 95.

  10. Golovanova, I.L. and Aminov, A.I., The effect of herbicide Roundup on the activity of glycosidases of fishes and their food objects, in Antropogennoe vliyanie na vodnye organizmy i ekosistemy (Anthropogenic Impact on Aquatic Organisms and Ecosystems), Yaroslavl: Filigran’, 2017, p. 9.

  11. Golovanova, I.L., Aminov, A.I., Kapshai, D.S., and Golovanov, V.K., Physiological and biochemical characteristics of juvenile ratan goby under chronic exposure to Roundup, Vestn. Astrakhan. Gos. Tekhn. Univ., Ser.: Rybn. Khoz., 2013, no. 3, p. 98.

  12. Kier, L.D., Review of genotoxicity studies of glyphosate and glyphosate-based formulations, 2013b Crit. Rev. Toxicol., vol. 43, no. 4, p. 283.

    Article  CAS  Google Scholar 

  13. Kuz’mina, V.V., Tarleva, A.F., and Sheptitskii, V.A., Influence of roundup herbicide on the activities of peptidases in the intestines of various fish species, J. Ichthyol., 2017, vol. 57, no. 5, p. 761.

    Article  Google Scholar 

  14. Le Mer, C., Roy, R.L., Pellerin, J., et al., Effects of chronic exposures to the herbicides altrazine and glyphosate to larvae of the three-spine stickleback (Gasterosteus aculeatus), Ecotoxicol. Environ. Saf., 2013, vol. 89, p. 174.

    Article  CAS  Google Scholar 

  15. Nwani, C.D., Nagpure, N.S., Kumar, R., et al., DNA damage and oxidative stress modulatory effects of glyphosate-based herbicide in freshwater fish, Channa punctatus, Environ. Toxicol. Pharmacol., 2013, vol. 36, no. 2, p. 539.

  16. Perechen’ rybokhozyaistvennykh normativov, predel’no dopustimykh kontsentratsii (PDK) i orientirovochno bezopasnykh urovnei vozdeistviya (OBUV) vrednykh veshchestv dlya vody vodnykh ob"ektov, imeyushchikh rybokhozyaistvennoe znachenie (List of Fishery Standards: Maximum Allowable Concentrations (MACs) and Approximately Safe Impact Levels (ASILs)) of Pollutants for Water in Aquatic Objects of Fishery Importance), Moscow: VNIRO, 1999.

  17. Rossi, C.R., Silva, M.D., Piancini, L.D.S., et al., Sublethal effects of waterborne herbicides in tropical freshwater fish, Bull. Environ. Contam. Toxicol., 2011, vol. 87, no. 6, p. 603.

    Article  CAS  Google Scholar 

  18. Salbego, J., Pretto, A., Silva, V.M.M., et al., Glifosato sobre a atividade de enzimas digestivas em piavas (Leporinus obtusidens), Ciência Rural, Santa Maria, 2014, vol. 44, no. 9, p. 1603.

    Article  Google Scholar 

  19. Sánchez, J.A.A., Varela, J.A.S., and Corcini, C.D., Effects of roundup formulations on biochemical biomarkers and male sperm quality of the livebearing Jenynsia multidentata,Chemosphere, 2017, vol. 177, p. 200.

    Article  Google Scholar 

  20. Sanden, M., Johannessen, L.E., Berdal, K.G., et al., Uptake and clearance of dietary dna in the intestine of Atlantic salmon (Salmo salar L.) fed conventional or genetically modified soybeans, Aquat. Nutrit., 2011, vol. 17, no. 3, p. 750.

    Article  Google Scholar 

  21. Sinhorin, V.D.G., Sinhorin, A.P., Teixeira, J.M.S., et al., Metabolic and behavior changes in surubim acutely exposed to a glyphosate-based herbicide, Arch. Environ. Contam. Toxicol., 2014, vol. 67, no. 4, p. 659.

    Article  CAS  Google Scholar 

  22. Solovyev, M. and Gisbert, E., Influence of time, storage temperature and freeze/thaw cycles on the activity of digestive enzymes from gilthead sea bream (Sparus aurata), Fish Physiol. Biochem., 2016, vol. 42, no. 5, p. 1383.

    Article  CAS  Google Scholar 

  23. Struger, J., Thompson, D., Staznik, B., et al., Occurrence of glyphosate in surface waters of Southern Ontario, Bull. Environ. Contam. Toxicol., 2008, vol. 80, no. 4, p. 378.

    Article  CAS  Google Scholar 

  24. Sviridov, A.V., Shushkova, T.V., Ermakova, I.T., et al., Microbial degradation of glyphosate herbicides (review), Appl. Biochem. Microbiol., 2015, vol. 51, no. 2, p. 188.

    Article  CAS  Google Scholar 

  25. Tsui, M.T.K. and Chu, L.M., Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors, Chemosphere, 2003, vol. 52, no. 7, p. 1189.

    Article  CAS  Google Scholar 

  26. Tsui, M.T.K. and Chu, L.M., Environmental fate and non-target impact of glyphosate-based herbicide (roundup) in a subtropical wetland, Chemosphere, 2008, vol. 71, no. 3, p. 439.

    Article  CAS  Google Scholar 

  27. Ugolev, A.M. and Kuz’mina, V.V., Pishchevaritel’nye protsessy i adaptatsii u ryb (Digestive Processes and Adaptations in Fishes), St. Petersburg: Gidrometeoizdat, 1993.

  28. Ugolev, A.M., Iezuitova, N.N., Masevich, Ts.G., et al., Issledovanie pishchevaritel’nogo apparata u cheloveka. Obzor sovremennykh metodov (Investigation of the Digestive Tract in Humans: Overview of Modern Methods), Leningrad: Nauka, 1969.

  29. USEPA (U.S. Environmental Protection Agency) Edition of the Drinking Water Standards and Health Advisories. 2003.

  30. Webster, T.M.U., Laing, L.V., Florance, H., et al., Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (Danio rerio), Environ. Sci. Technol., 2014, vol. 48, p. 1271.

    Article  Google Scholar 

  31. Zhidenko, A.A., Bibchuk, E.V., Mekhed, O.B., and Krivopisha, V.V., Influence of herbicides of different chemical structure on carbohydrate metabolism in carp, Gidrobiol. Zh., 2009, vol. 45, no. 5, p. 70.

    CAS  Google Scholar 

Download references

Funding

This work was performed as part of State Assignment No. AAAA-A18-118012690102-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Golovanova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by T. Kuznetsova

Acronyms: AA, amylolytic activity; LC50, median lethal concentration for Roundup.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminov, A.I., Golovanova, I.L. Effect of Roundup on the Activities of Glycosidase in the Intestines of Typical and Facultative Ichthyophages as a Function of Temperature and pH. Inland Water Biol 13, 291–296 (2020). https://doi.org/10.1134/S1995082920020029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082920020029

Keywords:

Navigation