Skip to main content
Log in

Role of Peptidases of the Enteric Microbiota and Prey in Temperature Adaptations of the Digestive System in Boreal Carnivorous Fish

  • ECOLOGICAL PHYSIOLOGY AND BIOCHEMISTRY OF HYDROBIONTS
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

For the first time the activity of casein-lytic and hemoglobin-lytic peptidases of intestinal mucosa, chyme and enteric microflora of carnivorous boreal fish (pike, zander, burbot, perch) was investigated across a wide temperature range (0–70°С) to reveal the role of the enzymes of the enteric microbiota and the prey in the temperature adaptations of the digestive system of these fish. It was shown that in summer at 0°С, the relative activity of peptidases of intestinal mucosa (less than 20%) is usually considerably less than that of chyme and enteric microflora peptidases (up to 40% of maximal activity). In winter, on the background of low relative activity of mucosa and enteric microbiota peptidases at 0°C revealed a high level of the relative activity of burbot and pike chyme peptidases (45 and 80% of maximal activity). The role of enteric microbiota and prey peptidases in digestive system adaptations of piscivorous fish to low temperatures is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Ásgeirsson, B., Fox, J.W., and Bjarnason, J.B., Purification and characterization of trypsin from the poikilotherm Gadus morhua, Eur. J. Biochem., 1989, vol. 180, pp. 85–94.

    Article  PubMed  Google Scholar 

  2. Austin, B., The bacterial microflora of fish, revised, Sci. World J., 2006, vol. 6, pp. 931–945.

    Article  CAS  Google Scholar 

  3. Bezerra, R.S., Lins, E.J.F., Alencar, R.B., et al., Alkaline proteinase from intestine of Nile tilapia (Oreochromis niloticus), Process Biochem. (Oxford, U. K.), 2005, vol. 40, pp. 1829–1834.

    Article  CAS  Google Scholar 

  4. Bezerra, R.S., Santos, J.F., Paiva, P.M.G., et al., Partial purification and characterization of a thermostable trypsin from pyloric caeca of tambaqui (Colossoma macropomum), J. Food Biochem., 2001, vol. 25, pp. 199–210.

    Article  CAS  Google Scholar 

  5. Buddington, R.K., Krogdahl, A., and Bakke-Mckellep, À.Ì., The intestines of carnivorous fish: structure and functions and relations with diet, Acta Physiol. Scand., Suppl. 1997, pp. 67–80.

  6. Concha-Frias, B.B., Alvarez- González, C.A., Gaxiola-Cortes, M.G., et al., Partial characterization of digestive proteases in the common snook Centropomus undecimalis, Int. J. Biol., 2016, vol. 8, pp. 1–11.

    Article  CAS  Google Scholar 

  7. Cuenca-Soria, C.A., Álvarez-González, C.A., Ortiz-Galindo, J.L., et al., Partial characterization of digestive proteases of the Mayan cichlid Cichlasoma urophthalmus, Fish Physiol. Biochem., 2014, vol. 40, pp. 689–699.

    Article  CAS  PubMed  Google Scholar 

  8. Dabrowski, K. and Glogowski, J., Studies on the proteolytic enzymes of invertebrates constituting fish food, Hydrobiologia (Hagua), 1977, vol. 52, pp. 171–174.

    Article  CAS  Google Scholar 

  9. Dabrowski, K. and Glogowski, J., The role of exogenic proteolytic enzymes in digestion processes in fish, Hydrobiologia (Hagua), 1977, vol. 54, pp. 129–134.

    Article  CAS  Google Scholar 

  10. Dixon, M. and Webb, E.C., Enzymes, 2nd ed., London: Longmans, Green and Co., 1964.

    Google Scholar 

  11. Ganguly, S. and Prasad, A., Microflora in fish digestive tract plays significant role in digestion and metabolism, Rev. Fish Biol. Fisher., 2012, vol. 22, pp. 11–16.

    Article  Google Scholar 

  12. Gelman, A.G., Kuz’mina, V.V., Drabkin, V., and Glatman, M., Temperature adaptations of fish digestive enzymes, in Feeding and Digestive Functions in Fishes, Cyrino, J.E.P., Bureau, D.P., and Kapoor, B.G., Eds., Enfield (NF), Jersey: Plymouth: Sci. Publ., 2008, Ch. 4, pp. 155–226.

  13. Hochachka, P.W. and Somero, G.N., Strategies of Biochemical Adaptation, Philadelphia: WB Saunders Company, 1973.

    Google Scholar 

  14. Hochachka, P.W. and Somero, G.N., Biochemical Adaptation. Mechanism and Process in Physiological Evolution, Oxford: Univ. Press, 2002.

    Google Scholar 

  15. Jančarik, A., Die Verdauung der Hauptnährstoffe beim Karpfen, Z. Fisch. Hilfswiss, 1964, vol. 12, pp. 601–684.

    Google Scholar 

  16. Kishimura, H., Tokuda, Y., Klomklao, S., et al., Enzymatic characteristics of trypsin from pyloric ceca of spotted mackerel (Scomber australasicus), J. Food Biochem., 2006, vol. 30, pp. 466–477.

    Article  CAS  Google Scholar 

  17. Kurokawa, T., Shiraishi, M., and Suzuki, T., Quantification of exogenous protease derived from zooplankton in the intestine of Japanese sardine (Sardinops melanotictus) larvae, Aquaculture, 1998, vol. 161, pp. 491–499.

    Article  CAS  Google Scholar 

  18. Kuz'mina, V.V., Classical and modern conceptions of fish digestion, in Feeding and Digestive Functions in Fishes, Cyrino, J.E.P., Bureau, D.P., and Kapoor, B.G., Eds., Enfield (NF), Jersey: Plymouth: Sci. Publ., 2008, Ch. 4, pp. 85–154.

  19. Kuz’mina, V.V., Processes of Exotrophy in Fish. Organization. Regulation. Adaptations, Moscow: Polygraph Plus, 2015.

    Google Scholar 

  20. Kuz'mina, V.V., Skvortsova, E.G., Shalygin, M.V., and Kovalenko, E.K., Role of peptidases of the enteral microbiota and preys in temperature adaptations of the digestive system in planktivorous and benthivorous fish, Fish Physiol. Biochem, 2015, vol. 41, pp. 1359–1368.

    Article  CAS  PubMed  Google Scholar 

  21. Kuz'mina, V.V., Zolotareva, G.V., and Sheptitskiy, V.A., Proteolytic activity in some freshwater animals and associated microbiota in a wide ph range, Fish Physiol. Biochem., 2017, vol. 43, pp. 373–383.

    Article  CAS  PubMed  Google Scholar 

  22. Lubianskiené, V., Verbikas, Yu., Jankevicus, K., et al., Obligate Symbiosis of Digestive Tract Microbiota and Organism, Vilnius (Lituania): Mokslas, 1989.

  23. Mattheis, Th., Ökologie der bakterien in darm von süsswassernuttfishen, Z. Fisch., 1964, vol. 12, pp. 6–10.

    Google Scholar 

  24. Munilla-Morán, R., Stark, J.R., and Babour, A., The role of exogenous enzymes in digestion in cultured turbot larvae (Scophthalmus maximus L.), Aquaculture, 1990, vol. 88, pp. 337–350.

    Article  Google Scholar 

  25. Munilla-Morán, R. and Saborido-Rey, F., Digestive enzymes in marine species. I. Proteinase activities in gut from redfish (Sebastes mentella), seabream (Sparus aurata) and turbot (Scophthalmus maximus), Comp. Biochem. Physiol. B, 1996, vol. 113, pp. 395–402.

    Article  Google Scholar 

  26. Muñoz, A.R.R., Purification and kinetic characterization of trypsin from the intestine and pyloric caeca of the white grunt, Haemulon plumierii (Lacepède, 1801), A Thesis Submitted in Partial Fulfillment for the Requirements for the Degree of Master of Science in Biology, Mayagüez Campus: University of Puerto Rico, 2004.

  27. Natalia, Y., Hashim, R., Ali, A., and Chong, A., Characterization of digestive enzymes in acarnivorous ornamental fish, the asian bony tongue Scleropages formosus (Osteoglossidae), Aquaculture, 2004, vol. 233, pp. 305–320.

    Article  CAS  Google Scholar 

  28. Oozeki, Y. and Bailey, K.M., Ontogenetic development of digestive enzyme activities in larval walleye pollock, Theragra chalcogramma, Mar. Biol. (Berlin), 1995, vol. 122, pp. 177–186.

    CAS  Google Scholar 

  29. Pavlisko, A., Rial, A., de Vecchi, S., and Coppes, Z., Properties of pepsin and trypsin isolated from the digestive tract of Parona signata “Palometa,” J. Food Biochem., 1997, vol. 21, pp. 289–308.

    Article  CAS  Google Scholar 

  30. Pavlisko, A., Rial, A., and Coppes, Z., Characterization of trypsin purified from the pyloric caeca of the southwest Atlantic white croaker Micropogohias furnieri (Sciaenidae), J. Food Biochem., 1997, vol. 21, pp. 383–400.

    Article  Google Scholar 

  31. Pavlisko, A., Rial, A., and Coppes, Z., Purification and characterization of a protease from the pyloric caeca of menhaden (Brevoortia spp.) and mullet (Mugil spp.) from the southwest Atlantic region, J. Food Biochem., 1999, vol. 23, pp. 225–241.

    Article  CAS  Google Scholar 

  32. Ray, A.K., Ghosh, K., and Ringø, E., Enzyme-producing bacteria isolated from fish gut: a review, Aquaculture Nutr., 2012, vol. 18, pp. 465–492.

    Article  CAS  Google Scholar 

  33. Richter-Otto, W. and Fehrmann, M., Zur methodik von darmflora untersuchungen, Ernährungsforsch, 1956, vol. 1, pp. 584–586.

    Google Scholar 

  34. Šyvokieně, J., Symbiont Digestion in Hydrobionts and Insects, Vilnius (Lituania): Mokslas, 1989.

  35. Ugolev, A.M. and Kuzmina, V.V., Digestive Processes and Adaptations in Fish, St. Petersburg: Gidrometeoizdat, 1993.

    Google Scholar 

  36. Versteeg, D.J. and Guesy, J.P., Lysosomal enzyme release in the bluegill sunfish (Lepomis macrochirus Rafinesque) exposed to cadmium, Arch. Environ. Contam. Toxicol., 1985, vol. 14, pp. 631–640.

    Article  CAS  PubMed  Google Scholar 

  37. Visessanguan, W., Menino, A.R., Kim, S.M., and An, H., Cathepsin l: a predominant heat activated proteinase in arrowtooth flounder muscle, J. Agric. Food Chem., 2001, vol. 49, no. 5, pp. 2633–2640.

    Article  CAS  PubMed  Google Scholar 

  38. Visessanguan, W., Benjakul, S., and An, H., Purification and characterization of cathepsin l in arrowtooth flounder (Atheresthes stomias) muscle, Comp. Physiol. Biochem. B, 2003, vol. 134, no. 3, pp. 474–487.

    Article  CAS  Google Scholar 

  39. Wang, B., Wang, C., Mims, S.D., and Xiong, Y.L., Characterization of the proteases involved in hydrolyzing paddlefish (Polyodon spathula) myosin, J. Food Biochem., 2000, vol. 24, pp. 503–515.

    Article  CAS  Google Scholar 

  40. Yamashita, M. and Kanagaya, S., Participation of cathepsin l into extensive softening of the muscle of chum salmon caught during spawning migration, Bull. Jpn. Soc. Sci. Fish., 1990, vol. 56, no. 8, pp. 1271–1277.

    Article  CAS  Google Scholar 

  41. Yamashita, M. and Kanagaya, S., Purification and characterization of cathepsin l from the white muscle of chum salmon, Oncorhynchus keta, Comp. Biochem. Physiol. B, 1990, vol. 96, no. 2, pp. 247–253.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kuz’mina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’mina, V.V., Skvortsova, E.G. & Shalygin, M.V. Role of Peptidases of the Enteric Microbiota and Prey in Temperature Adaptations of the Digestive System in Boreal Carnivorous Fish. Inland Water Biol 12, 231–239 (2019). https://doi.org/10.1134/S1995082919020093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082919020093

Keywords:

Navigation