Skip to main content
Log in

Cytogenetic and Molecular Genetic Indexes in Populations of Anura (Rana arvalis Nilsson) under Conditions of Radioactive and Chemical Pollution of an Aquatic Environment

  • Aquatic Toxicology
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

Amphibians are one of the most poorly studied groups of vertebrates in ecotoxicology and radioecology. The level of cytogenetic damage in the blood cells of tadpoles Rana arvalis Nilsson living on the territory of the Ukhta district of the village of Vodnyi in the Komi Republic, which is contaminated with technogenic radionuclides and heavy metals, is evaluated by “Comet assay”. It is shown that, in animals that develop in water bodies with high concentrations of radionuclides and heavy metals, the frequency of alkalilabile sites and single-strand break of DNA is higher than in the control area. No significant differences have been found when estimating the level of double-strand break of DNA. AFLP analysis indicates a weak genetic differentiation of the studied populations of amphibians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anufriev, V.M. and Bobretsov, A.V., Amphibians and Reptiles, St. Petersburg: Nauka, 1996.

    Google Scholar 

  2. Vodyanitskii, Yu.N., Equations for assessing the total contamination of soils with heavy metals and metalloids, Eurasian Soi Sci., 2010, no. 10, pp. 1184–1188.

    Article  Google Scholar 

  3. Grin, I.R., Konorovsky, P.G., Nevinsky, G.A., and Zharkov, D.O., Heavy metal ions affect the activity of DNA glycosylases of the FPG family, Biochemistry (Moscow), 2009, vol. 74, no. 11, pp. 1253–1259.

    Article  CAS  Google Scholar 

  4. Evseeva, T.I. and Geras’kin, S.A., Combined Effect of Radiation and Nonradiation Factors on Tradescantia, Yekaterinburg: Ural Division RAS, 2001.

    Google Scholar 

  5. Evseeva, T.I., Geras’kin, S.A., and Vakhrusheva, O.M., Evaluation of the partial contribution of naturally occurring radionuclides and nonradioactive chemically toxic elements in formation of biological effects within the Vicia cracca population inhabiting the area contaminated with uranium-radium production wastes in the Komi Republic, Radiats. Biol. Radioekol., 2014, vol. 54, no. 1, pp. 85–96.

    CAS  Google Scholar 

  6. Kryukov, V.I., Influence of chemical pollution of agroecosystems on the frequency of chromosome aberrations in anurans, Russ. J. Ecol., 1999, vol. 30, no. 5, pp. 357–360.

    Google Scholar 

  7. Directive Document RD 52.24.643-2002: The Method of Complex Assessment of Surface Water Contamination Degree by Hydrochemical Indicators”, Moscow: Media Servis, 2012.

  8. Moskvitina, N.S., Kuranova, V.N., and Savel’ev, S.V Disturbance of the embryonic development of vertebrates under conditions of technogenic pollution, Sib. Ekol. Zh., 2011, no. 4, pp. 487–495.

    Google Scholar 

  9. Pyastolova, O.A., Vershinin, V.L., Trubetskaya, E.A., and Gatiyatullina, E.Z., Utilization of amphibians in bioindication research on territories of the Eastern Urals radioactive trace, Russ. J. Ecol., 1996, vol. 27, no. 5, pp. 361–365.

    Google Scholar 

  10. Severtsova, E.A. and Aguillon Gutierrez, D.R., Postembryonic development of anurans in ponds littered with metal-containing refuse (simulation experiments), Biol. Bull., 2013, vol. 40, no. 9, pp. 738–747.

    Article  Google Scholar 

  11. Taskaev, A.I. and Kichigin, A.I., Aquatic Harvest Industry: Radium Production in the Komi Republic, Syktyvkar: Komi Science Centre, Ural Division RAS, 2002.

    Google Scholar 

  12. Angeletti, D., Carere, C., and Editors, G., Comparative ecogenotoxicology: monitoring the DNA of wildlife, Curr. Zool., 2014, vol. 60, no. 2, pp. 252–254.

    Article  Google Scholar 

  13. Bal, W., Protas, A.M., and Kasprzak, K.S., Genotoxicity of metal ions: chemical insights, Met. Ions Life Sci., 2011, vol. 8, pp. 319–373.

    PubMed  CAS  Google Scholar 

  14. Beresford, N.A., Barnett, C.L., Howard, B.J., et al., Derivation of transfer parameters for use within the ERICA Tool and the default concentration ratios for terrestrial biota, J. Environ. Radioact., 2008, vol. 99, pp. 1393–1407.

    Article  PubMed  CAS  Google Scholar 

  15. Beresford, N.A., Beaugelin-Seiller, K., Burgos, J., et al., Radionuclide biological half-life values for terrestrial and aquatic wildlife, J. Environ. Radioact., 2015, vol. 150, pp. 270–276.

    Article  PubMed  CAS  Google Scholar 

  16. Blaustein, A.R. and Kiesecker, J.M., Complexity in conservation: lessons from the global decline of amphibian populations, Rev. Ecol. Lett., 2002, vol. 5, pp. 597–608.

    Article  Google Scholar 

  17. Bondarkov, M.D., Gaschak, S.P., Goryanaya, Ju.A., et al., Radioactive contamination of amphibian in the Chornobyl zone, Collection of Scientific Articles—Scientific and Technical Aspects of International Cooperation in Chornobyl, Kyiv: Politechnika, 2002, vol. 4, pp. 508–517.

    Google Scholar 

  18. Bréchignac, F., Protection of the environment: how to position radioprotection in an ecological risk assessment perspective, Sci. Total Environ., 2003, vol. 307, pp. 35–54.

    Article  PubMed  CAS  Google Scholar 

  19. Brown, J.E., Alfonso, B., Avila, R., et al., The ERICA Tool, J. Environ. Radioact., 2008, vol. 99, pp. 1371–1383.

    Article  PubMed  CAS  Google Scholar 

  20. Cousteau, C., Chevillon, C., and Ffrench-Constant, R.H., Resistance to xenobiotics and parasites: can we count the cost?, Trends Ecol. Evol., 2000, vol. 15, pp. 378–383.

    Article  Google Scholar 

  21. Dmowski, K., Rossa, M., Kowalska, J., and Krasnodebska-Ostrega, B., Thallium in spawn, juveniles, and adult common toads (Bufo bufo) living in the vicinity of a zinc-mining complex, Poland, Environ. Monit. Assess., 2015, vol. 187, p. 4141.

    Article  PubMed  CAS  Google Scholar 

  22. Eeva, T., Belskii, E., and Kuranov, B., Environmental pollution affects genetic diversity in wild bird populations, Mutat. Res., 2006, vol. 608, pp. 8–15.

    Article  PubMed  CAS  Google Scholar 

  23. ERICA, Deliverable 5. Derivation of predicted-no-effectdose-rate values for ecosystems (and their sub-organisational levels) exposed to radioactive substances, EC 6th Framework Programme. Contract FI6R-CT-2004-508847, Swedish Radiation Protection Authority, 2006.

  24. Evanno, G., Regnaut, S., and Goudet, J., Detecting the number of clusters of individuals using the software structure: a simulation study, Mol. Ecol., 2005, vol. 14, pp. 2611–2620.

    Article  PubMed  CAS  Google Scholar 

  25. Excoffier, L., Laval, G., and Schneider, S., Arlequin version 3.0: an integrated software package for population genetics data analysis, Evol. Bioinform. Online, 2005, vol. 1, pp. 47–50.

    Article  CAS  Google Scholar 

  26. Falush, D., Stephens, M., and Pritchard, J.K., Inference of population structure using multilocus genotype data: dominant markers and null alleles, Mol. Ecol., 2007, vol. 7, pp. 574–578.

    Article  CAS  Google Scholar 

  27. Fasola, E., Ribeiro, R., and Lopes, I., Microevolution due to pollution in amphibians: a review on the genetic erosion hypothesis, Environ. Pollut., 2015, vol. 204, pp. 181–190.

    Article  PubMed  CAS  Google Scholar 

  28. Flynn, R.W., Scott, D.E., Kuhne, W., et al., Lethal and sublethal measures of chronic copper toxicity in the eastern narrowmouth toad, Gastrophryne carolinensis, Environ. Toxicol. Chem., 2015, vol. 34, no. 3, pp. 575–582.

    Article  PubMed  CAS  Google Scholar 

  29. Frankham, R., Ballou, J.D., and Briscoe, D.A., Introduction to Conservation Genetics, Cambridge: Cambridge Univ. Press, 2009.

    Google Scholar 

  30. Geraskin, S.A., Kim, J.K., Dikarev, V.G., et al., Cytogenetic effects of combined radioactive (137Cs) and chemical (Cd, Pb, and 2,4-D herbicide) contamination on spring barley intercalar meristem cell, Mutat. Res., 2005, vol. 586, pp. 147–159.

    Article  CAS  Google Scholar 

  31. Giska, I., Babik, W., van Gestel, C.A.M., et al., Genome-wide genetic diversity of rove beetle populations along a metal pollution gradient, Ecotoxicol. Environ. Safety, 2015, vol. 119, pp. 98–105.

    Article  PubMed  CAS  Google Scholar 

  32. Hayden, M.T., Reeves, M.K., Holyoak, M., et al., Thrice as easy to catch! Copper and temperature modulate predator-prey interactions in larval dragonflies and anurans, Ecosphere, 2015, vol. 6, no. 4, pp. 1–17.

    Article  Google Scholar 

  33. IAEA, Effects of Ionizing Radiation on Plants and Animals at Levels Implied by Current Radiation Protection Standards, Techn. Report Series, Vienna, 1992, vol.332.

  34. Jarvis, R.B. and Knowles, J.F., DNA damage in zebrafish larvae induced by exposure to low-dose rate gamma-radiation: detection by the alkaline comet assay, Mutat. Res., 2003, vol. 541, pp. 63–69.

    Article  PubMed  CAS  Google Scholar 

  35. Kimura, M. and Crow, J.F., The number of alleles that can be maintained in a finite population, Genetics, 1964, vol. 49, pp. 725–738.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Knopper, L.D., Use of the Comet Assay to Asses Genotoxicity in Mammalian, Avian and Amphibian Species, Techn. Report Series, Ottawa, 2005, vol. 429, pp. 10–21.

    Google Scholar 

  37. Kopelman, N.M., Mayzel, J., Jakobsson, M., et al., CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K, Mol. Ecol. Resour., 2015, vol. 15, pp. 1179–1191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Luquet, E., Lena, J.-P., David, P., et al., Consequences of genetic erosion on fitness and phenotypic plasticity in European tree frog populations (Hyla arborea), J. Evol. Biol., 2011, vol. 24, pp. 99–110.

    Article  PubMed  CAS  Google Scholar 

  39. Mardirosian, M.N., Lascano, C.I., Ferrari, A., et al., Acute toxicity of arsenic and oxidative stress responses in the embryonic development of the common South American toad Rhinella arenarum, Environ. Toxicol. Chem., 2015, vol. 34, no. 5, pp. 1009–1014.

    Article  PubMed  CAS  Google Scholar 

  40. Matson, C.W., Lambert, M.M., McDonals, T.J., et al., Evolutionary toxicology and population genetic effects of chronic contaminant exposure on marsh frogs (Rana ridibunda) in Sumgayit, Azerbaijan, Environ. Health Perspect., 2006, vol. 114, pp. 547–552.

    Article  PubMed  CAS  Google Scholar 

  41. Matson, C.W., Palatnikov, G.M., McDonals, T.J., et al., Patterns of genotoxicity and contaminant exposure: evidence of genomic instability in the marsh frogs (Rana ridibunda) of Sumgayit, Azerbaijan, Environ. Toxicol. Chem., 2005, vol. 8, pp. 2055–2064.

    Article  Google Scholar 

  42. Medina, M., Correa, J., and Barata, C., Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress, Chemosphere, 2007, vol. 67, pp. 2105–2114.

    Article  PubMed  CAS  Google Scholar 

  43. Michailova, P., Sella, G., and Petrova, N., Chironomids (Diptera) and their salivary gland chromosomes as indicators of trace-metal genotoxicity, Ital. J. Zool., 2012, vol. 79, no. 2, pp. 218–230.

    Article  CAS  Google Scholar 

  44. Mothersill, C., Salbu, B., Heier, L.S., et al., Multiple stressor effects of radiation and metals in salmon (Salmo salar), J. Environ. Radioact., 2007, vol. 96, pp. 20–31.

    Article  PubMed  CAS  Google Scholar 

  45. Nei, M., Genetic distance between populations, Am. Nat., 1972, vol. 106, pp. 283–292.

    Article  Google Scholar 

  46. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.

    Google Scholar 

  47. O’Brien, J. and Allentoft, M.E., Global amphibian declines, loss of genetic diversity and fitness: a review, Diversity, 2010, vol. 2, pp. 47–71.

    Article  Google Scholar 

  48. Olive, P.L., Wlodek, D., Durand, R.E., and Banath, J.P., Factors influence DNA migration from individual cells subjected to gel electrophoresis, Exp. Cell Res., 1992, vol. 198, pp. 259–260.

    Article  PubMed  CAS  Google Scholar 

  49. Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945–959.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Ralph, S. and Petras, M., Comparison of sensitivity to methyl methanesulfonate among tadpole developmental stages using the alkaline single-cell gel electrophoresis (Comet) assay, Environ. Mol. Mutagen., 1998, vol. 31, no. 4, pp. 374–382.

    Article  PubMed  CAS  Google Scholar 

  51. Räsänen, K., Evolutionary implications of acidification: a frog’s eye view, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, Uppsala: Acta Univ. Upsal., 2002, vol.764.

  52. Ribeiro, R. and Lopes, I., Contaminant driven genetic erosion and associated hypotheses on alleles loss, reduced population growth rate and increased susceptibility to future stressors: an essay, Ecotoxicology, 2013, vol. 22, pp. 889–899.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Rinner, B.P., Matson, C.W., Islamzadeh, A., et al., Evolutionary toxicology: contaminant-induced genetic mutations in mosquitofish from Sumgayit, Azerbaijan, Ecotoxicology, 2011, vol. 20, pp. 365–376.

    Article  PubMed  CAS  Google Scholar 

  54. Schulte, P.M., What is environmental stress? Insights from fish living in a variable environment, J. Exp. Biol., 2014, vol. 217, pp. 23–34.

    Article  PubMed  Google Scholar 

  55. Semlitsch, R.D. and Bodie, J.R., Are small, isolated wetlands expendable?, Conserv. Biol., 1998, vol. 12, no. 5, pp. 1129–1133.

    Article  Google Scholar 

  56. Semlitsch, R.D., Bridges, C.M., and Welch, A.M., Genetic variation and a fitness tradeoff in the tolerance of gray treefrog (Hyla versicolor) tadpoles to the insecticide carbaryl, Oecologia, 2000, vol. 125, pp. 179–185.

    Article  PubMed  CAS  Google Scholar 

  57. Shuktomova, I.I. and Rachkova, N.G., Determination of Ra-226 and Ra-228 in slightly mineralized natural waters, J. Environ. Radioact., 2011, vol. 102, pp. 84–87.

    Article  PubMed  CAS  Google Scholar 

  58. Stark, K., Risk from radionuclides: a frogs perspective. Accumulation of 137Cs in riparian wetland, radiation doses, and effects on frogs and toads after low-dose rate exposure, Ph. D thesis Dept. of Systems Ecology, Stockholm: Stockholm Univ., 2006.

    Google Scholar 

  59. Stark, K., Scott, D.E., Tsyusko, O., et al., Effects of two stressors on amphibian larval development, Ecotoxicol. Environ. Safety, 2012, vol. 79, pp. 283–287.

    Article  PubMed  CAS  Google Scholar 

  60. Stark, K., Scott, D.E., Tsyusko, O., et al., Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris, PLoS One, 2015, vol. 10, no. 4. e0125327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Sultan, S.E. and Spencer, H.G., Metapopulation structure favors plasticity over local adaptation, Am. Nat., 2002, vol. 160, pp. 271–283.

    Article  PubMed  Google Scholar 

  62. Vences, M., Hauswaldt, S., Steinfartz, S., et al., Radically different phylogeographies and patterns of genetic variation in two European brown frogs, genus Rana, Mol. Phylogenet. Evol., 2013, vol. 68, pp. 657–670.

    Article  PubMed  Google Scholar 

  63. Willi, Y., Van Buskirk, J., and Hoffmann, A., Limits to the adaptive potential of small populations, Annu. Rev. Ecol. Evol. Syst., 2006, vol. 37, pp. 433–458.

    Article  Google Scholar 

  64. Yeh, F.C., Yang, R.C., and Boyle, T., Popgene Version 1.31, Microsoft Window-Based Free Software for Population Genetic Analysis, Edmonton: Univ. Alberta, 1999.

    Google Scholar 

  65. Zocche, J.J., Damiani, A.P., Haizenreder, G., et al., Assessment of heavy metal content and DNA damage in Hypsiboas faber (anuran amphibian) in coal opencasting mine, Environ. Toxicol. Pharmacol., 2013, vol. 36, no. 1, pp. 194–201.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Yushkova.

Additional information

Original Russian Text © E.A. Yushkova, I.S. Bodnar, D.M. Shadrin, Y.I. Pylina, V.G. Zainullin, 2018, published in Biologiya Vnutrennykh Vod, 2018, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushkova, E.A., Bodnar, I.S., Shadrin, D.M. et al. Cytogenetic and Molecular Genetic Indexes in Populations of Anura (Rana arvalis Nilsson) under Conditions of Radioactive and Chemical Pollution of an Aquatic Environment. Inland Water Biol 11, 349–358 (2018). https://doi.org/10.1134/S1995082918030239

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082918030239

Keywords

Navigation