Skip to main content
Log in

Content of total free nucleotides in the plankton of the Rybinsk reservoir (Upper Volga)

  • Structure and Functioning of Aquatic Systems
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The content of total free nucleotides (TFNs) in the plankton of the Rybinsk reservoir and in specific size fractions of the plankton has been determined by the spectrophotometric method modified by the authors. The content of TFNs amounts to 58.1 ± 5.4, 75.2 ± 4.6, and 64.1 ± 7.3 μg/L in spring, summer, and autumn, respectively, and exhibits a close correlation with the total plankton biomass (r = 0.67), whereas the TFN/Chl parameter is closely correlated to the ratio of autotroph and heterotroph organism biomass (r = 0.96). The contribution of the fraction of more than 3 μm in size (microplankton and nanoplankton) to the TFN pool is 77 ± 4% in spring, 74 ± 3% in summer, and 47 ± 3% in autumn, whereas the contribution of the fraction of 0.45–3 μm in size (ultraplankton) during these seasons is 23 ± 4, 26 ± 3, and 53 ± 3%, respectively. Regression equations that can be used to infer an estimate of plankton biomass from TFN content have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kopylov, A.I. and Kosolapov, D.B., Bakterioplankton vodokhranilishch Verkhnei i Srednei Volgi (Bakterioplankton of the Upper and Middle Volga Reservoirs), Moscow: Izd. Sovrem. Gos. Univ., 2008.

    Google Scholar 

  2. Kopylov, A.I., Lazareva, V.I., Pyrina, I.L., et al., Microbial “loop” in the planktonic food web of a large plain reservoir, Usp. Sovrem. Biol., 2010, no. 6, pp. 544–556.

    Google Scholar 

  3. Lazareva, V.I., Struktura i dinamika zooplanktona Rybinskogo vodokhranilishcha (Structure and Dynamics of Zooplankton in the Rybinsk Reservoir), Moscow: Tovar. Nauch. Izd. KMK, 2010.

    Google Scholar 

  4. Lusta, K.A. and Fikhte, B.A., Metody opredeleniya zhiznesposobnosti mikroorganizmov (Methods for Determining the Viability of Microorganisms), Pushchino: Nauch. Tsentr Biol. Issled., Inst. Biokhim. Fiziol. Mikroorganizmov ANSSSR, 1990.

    Google Scholar 

  5. Metodika izucheniya biotsenozov vnutrennikh vodoemov (Method for Study Biocenoses of Inland Water Bodies), Moscow: Nauka, 1975.

  6. Mineeva, N.M., Rastitel’nye pigmenty v vode volzhskikh vodokhranilishch (Plant Pigments in the Waters of the Volga River Reservoirs), Moscow: Nauka, 2004.

    Google Scholar 

  7. Mineeva, N.M., Abramova, N.N., and Andreeva, A.M., Dynamics of chlorophyll and ATP in the plankton of a large plain reservoir during a trophy outbreak, Voda. Khim. Ekol., 2014, no. 12, pp. 26–34.

    Google Scholar 

  8. Mineeva, N.M., Andreeva, A.M., and Ryabtseva, I.P., The content of free nucleotides and chlorophyll in plankton of the Upper Volga reservoirs, Povolzhsk. Ekol. Zh., 2016, no. 1, pp. 61–71.

    Google Scholar 

  9. Mineeva, N.M., Korneva, L.G., and Solov’eva, V.V., Influence of environemntal factors on phytoplankton photosynthetic activity in the Volga River reservoirs, Inland Water Biol., 2016, vol. 9, no. 3, pp. 258–267.

    Article  Google Scholar 

  10. Mineeva, N.M., Korneva, L.G., and Solov’eva, V.V., Chlorophyll content per unit phytoplankton biomass in reservoirs of the Volga cascade (Russia), Algologiya, 2014, vol. 24, no. 4, pp. 476–487.

    Google Scholar 

  11. Mikheeva, T.M., Problems in the study of phytoplankton: nanophitoplankton (definition, fractionation, and importance in primary production). Overview, Gidrobiol. Zh., 1988, vol. 24, no. 4, pp. 3–21.

    Google Scholar 

  12. Praktikum po biokhimii (A Practical Course in Biochemistry), Moscow: Izd. MGU, 1989.

  13. Rybinskoe vodokhranilishche i ego zhizn' (Rybinsk Reservoir and Its Life), Leningrad: Nauka, 1972.

  14. Sysoev, A.A., Biochemical aspects of assessment of production–destruction microplankton succession stages and physiological state of microalgae in cultures, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Sevastopol, 2014.

    Google Scholar 

  15. Sysoev, A.A. and Sysoeva, I.V., Biochemical basis of assessment of production–destruction microplankton succession stages in the water of the Bransfield Strait (West Antarctica) in the early autumn season of 2002, Ukr. Antarkt. Zh., 2005, no. 3, pp. 108–114.

    Google Scholar 

  16. Fitoplankton Volgi. Ekologiya fitoplanktona Rybinskogo vodokhranilishcha (Volga Phytoplankton: Ecology of Phytoplankton in the Rybinsk Reservoir), Tolyatti: Inst. Ekol. Volzhsk. Basseina RAN, 1999.

  17. Beardall, J., Young, E., and Roberts, S., Approaches for determining phytoplankton nutrient limitation, Aquat. Sci., 2001, vol. 63, pp. 44–69.

    Article  CAS  Google Scholar 

  18. Behrenfeld, M.J., Prasil, O., Babin, M., and Bruyant, F., Review in search of a physiological basis for covariations in light-limited and light-saturated photosynthesis, J. Phycol., 2004, vol. 40, pp. 4–25.

    Article  CAS  Google Scholar 

  19. Bianchi, T.S. and Canuel, E.A., Chemical Biomarkers in Aquatic Ecosystems, Princeton: Princeton Univ. Press, 2011.

    Book  Google Scholar 

  20. Cano, M.G., Casco, M.A., Solari, L.C., et al., Implications of rapid changes in chlorophyll a of plankton, epipelon, and epiphyton in a Pampean shallow lake: an interpretation in terms of a conceptual model, Hydrobiologia, 2008, vol. 614, no. 1, pp. 33–45.

    Article  CAS  Google Scholar 

  21. Carstensen, J. and Henriksen, P., Phytoplankton biomass response to nitrogen inputs: a method for WFD boundary setting applied to Danish coastal waters, Hydrobiologia, 2009, vol. 633, no. 1, pp. 137–149.

    Article  CAS  Google Scholar 

  22. Cavari, B., ATP in Lake Kinneret: indicator of microbial biomass or of phosphorus deficiency, Limnol., Oceanogr., 1976, vol. 21, no. 2, pp. 231–236.

    Article  CAS  Google Scholar 

  23. Chianda, G. and Pagnotta, R., Ratio ATP/chlorophyll as an index of rivers water quality, Verh. Int. Ver. theor. und angew. Limnol., 1978, vol. 20, no. 3, pp. 1897–1901.

    Google Scholar 

  24. Dumont, H.J., Van de Velde, I., and Dumont, S., The dry weight estimate of biomass in selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters, Oecologia, 1975, vol. 19, no. 1, pp. 75–97.

    Article  PubMed  Google Scholar 

  25. Holm-Hansen, O., ATP levels in algal cells as influenced by environmental conditions, Plant Cell Physiol., 1970, vol. 11, no. 4, pp. 689–700.

    CAS  Google Scholar 

  26. Holm-Hansen, O., The use of ATP determination in ecological studies, Bull. Ecol. Res. Comm. Stokholm, 1973, vol. 17, pp. 215–222.

    CAS  Google Scholar 

  27. Holm-Hansen, O. and Booth, C.R., The measurement of adenosine triphosphate in the ocean and its ecological significance, Limnol., Oceanogr., 1966, vol. 17, no. 4, pp. 544–555.

    Google Scholar 

  28. Hunter, B.L. and Laws, E.A., ATP and chlorophyll “a” as estimators of phytoplankton carbon biomass, Limnol., Oceanogr., 1981, vol. 26, no. 5, pp. 944–956.

    Article  CAS  Google Scholar 

  29. ICES Zooplankton Methodology Manual, London: Acad. Press, 2000.

  30. Karl, D.M. and Winn, C.D., Adenine metabolism and nucleic acid synthesis: application to microbiological oceanography, in Heterotrophic Activity in the Sea, New York: Plenum Press, 1984, pp. 197–216.

    Chapter  Google Scholar 

  31. Kroon, B.M.A. and Thoms, S., From electron to biomass: a mechanistic model to describe phytoplankton photosynthesis and steady-state growth rate, J. Phycol., 2006, vol. 42, no. 3, pp. 593–609.

    Article  CAS  Google Scholar 

  32. Naselli-Flores, L. and Barone, R., Fight on plankton or phytoplankton shape and size as adaptive tools to get ahead in the struggle for life, Cryptogamie Algol., 2011, vol. 32, no. 2, pp. 157–204.

    Article  Google Scholar 

  33. Noges, T., ATP as an index of phytoplankton productivity. The Chl a/ATP quotient, Int. Rev. gesamt. Hydrobiol., 1989, vol. 74, no. 2, pp. 121–133.

    Article  CAS  Google Scholar 

  34. Norland, S., The relationship between biomass and volume of bacteria, in Handbook of Methods in Aquatic Microbial Ecology, London: Lewis Publ., 1993, pp. 303–308.

    Google Scholar 

  35. Paerl, H.W., Tilzer, M.M., and Goldman, C.R., Chlorophyll a versus adenosine triphophate as algal biomass indicator on lakes, J. Phycol., 1976, vol. 12, no. 2, pp. 242–246.

    CAS  Google Scholar 

  36. Porter, K.G. and Feig, Y.S., The use of DAPY for identifying and counting of aquatic microflora, Limnol., Oceanogr., 1980, vol. 25, no. 5, pp. 943–948.

    Article  Google Scholar 

  37. Saad, J.F., Schiaffino, R.M., Vinocur, A., et al., Microbial planktonic communities of freshwater environments from Tierra del Fuego: dominant trophic strategies in lakes with contrasting features, J. Plankton Res., 2013, vol. 35, no. 6, pp. 1220–1233.

    Article  CAS  Google Scholar 

  38. SCOR-UNESCO Working Group 17. Determination of photosynthetic pigments, in Determination of Photosynthetic Pigments in Sea Water. Monographs on Oceanographic Methodology, Montreux: UNESSO, 1966, pp. 9–18.

    Google Scholar 

  39. Steigenberger, S., Terjung, F., Grossart, H.-P., and Reuter, R., Blue-fluorescence of NADPH as an indicator of marine primary production, EARSeL eProceedings, 2004, no. 3 (1), pp. 18–25.

    Google Scholar 

  40. Weithoff, G., The concepts of “plant functional types” and “functional diversity” in lake phytoplankton, a new understanding of phytoplankton ecology?, Freshwater Biol., 2003, vol. 48, no. 9, pp. 1669–1675.

    Article  Google Scholar 

  41. Yacobi, Y.Z. and Zohary, T., Carbon: chlorophyll-a ratio, assimilation numbers and turnover times of Lake Kinneret phytoplankton, Hydrobiologia, 2010, vol. 639, pp. 185–196.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Mineeva.

Additional information

Original Russian Text © N.M. Mineeva, A.M. Andreeva, I.P. Ryabtseva, A.I. Kopylov, E.A. Sokolova, I.V. Mitropol’skaya, 2017, published in Biologiya Vnutrennykh Vod, 2017, No. 3, pp. 17–25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mineeva, N.M., Andreeva, A.M., Ryabtseva, I.P. et al. Content of total free nucleotides in the plankton of the Rybinsk reservoir (Upper Volga). Inland Water Biol 10, 258–265 (2017). https://doi.org/10.1134/S1995082917030117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082917030117

Keywords

Navigation