Skip to main content
Log in

Distribution of viruses in the water column of the ice-covered Rybinsk Reservoir and their contribution to heterotrophic bacteria mortality

  • Aquatic Microbiology
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

Virioplankton and bacterioplankton abundance has been determined in the pelagic and littoral zones of the Rybinsk Reservoir during the ice-covered period. The role of viruses in heterotrophic bacterioplankton infection and mortality is assessed. At water temperatures between 0.3 and 0.9°C, the number of planktonic virus particles and planktonic bacteria varies from 37.1 × 106 to 84.1 × 106 particles/mL, (57.3 ± 2.1) × 106 particles/mL on average and from 2.50 × 106 to 6.11 × 106 cells/mL, (3.66 ± 0.16) × 106 cells/mL on average, respectively. The ratio of the virus number to the bacteria number varies from 8.8 to 27.9, being 16.5 ± 0.7 on average. Visually infected cells comprise 0.3–0.5% (1.5 ± 0.2% on average) of the total number of bacterioplankton. Infected bacterial cells contain from 5 to 107 (17 ± 4 on average) mature virus particles. The average virus-induced mortality of bacteria accounts for 13.0 ± 1.9% (variations range from 2 to 55%) of the daily bacterial production, indicating that viruses play an important role in the regulation of bacterioplankton production and abundance in the Rybinsk Reservoir during the ice-covered period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drucker, V.V. and Dutova, N.V., Bacteriophages as a new trophic link in the ecosystem of the deep-water Lake Baikal, Dokl. Biol. Sci., 2009, vol. 427, pp. 339–342.

    Article  CAS  PubMed  Google Scholar 

  2. Kopylov, A.I., Kosolapov, D.B., and Zabotkina, E.A., Viruses in the plankton of the Rybinsk Reservoir, Microbiology (Moscow), 2007, vol. 76, no. 6, pp. 782–790.

    Article  CAS  Google Scholar 

  3. Kopylov, A.I., Kosolapov, D.B., and Zabotkina, E.A., Impact of viruses on heterotrophic bacterioplankton and picocyanobacteria in reservoirs, Dokl. Biol. Sci., 2011, vol. 437, pp. 91–93.

    Article  CAS  PubMed  Google Scholar 

  4. Romanenko, V.I. and Kuznetsov, S.I., Ekologiya mikroorganizmov presnykh vodoemov. Laboratornoe rukovodstvo (Ecology of Freshwater Microorganisms: A Laboratory Manual), Leningrad: Nauka, 1974.

    Google Scholar 

  5. Stroinov, Ya.V., Romanenko, A.V., Maslennikova, T.S., and Kopylov, A.I., Virio-and bacterioplankton of a small river: influence that viruses have on the mortality of heterotrophic bacteria, Inland Water Biol., 2011, vol. 4, no. 3, pp. 293–300.

    Article  Google Scholar 

  6. Ekologicheskie problemy Verkhnei Volgi (Environmental Problems of the Upper Volga River), Yaroslavl: Izd. Yaroslav. Gos. Tekhn. Univ., 2001.

  7. Binder, B., Reconsidering the relationship between virally induced bacterial mortality and frequency of infected cells, Aquat. Microb. Ecol., 1999, vol. 18, pp. 207–215.

    Article  Google Scholar 

  8. Bratbak, G., Thingstad, F., and Heldal, M., Viruses and the microbial loop, Microb. Ecol., 1994, vol. 28, pp. 209–221.

    Article  CAS  PubMed  Google Scholar 

  9. Caron, D.A., Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy and comparison with other procedures, Appl. Environ. Microbiol., 1983, vol. 46, no. 2, pp. 491–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fischer, U.R. and Velimirov, B., High control of bacterial production by viruses in a eutrophic oxbow lake, Aquat. Microb. Ecol., 2002, vol. 27, pp. 1–12.

    Article  Google Scholar 

  11. Fuhrman, J.A., Marine viruses and their biogeochemical and ecological effects, Nature, 1999, vol. 399, pp. 541–548.

    Article  CAS  PubMed  Google Scholar 

  12. Noble, R.T. and Fuhrman, J.A., Use of SYBR green for rapid epifluorescence count of marine viruses and bacteria, Aquat. Microb. Ecol., 1998, vol. 14, pp. 113–118.

    Article  Google Scholar 

  13. Noble, R.T., Middelboe, M., and Fuhrman, J., Effects of viral enrichment on the mortality and growth of heterotrophic bacterioplankton, Aquat. Microb. Ecol., 1999, vol. 18, pp. 1–13.

    Article  Google Scholar 

  14. Norland, S., The relationship between biomass and volume of bacteria, in Handbook of Methods in Aquatic Microbial Ecology, Boca Raton, FL: Lewis Publ., 1993, pp. 303–308.

    Google Scholar 

  15. Porter, K.G. and Feig, Y.S., The use of DAPI for identifying and counting of aquatic microflora, Limnol., Oceanogr., 1980, vol. 25, no. 5, pp. 943–948.

    Article  Google Scholar 

  16. Sherr, E.B. and Sherr, B.F., Protozoan grazing rates via uptake fluorescently labelled prey, in Handbook of Methods in Aquatic Microbial Ecology, Boca Raton, FL: Lewis Publ., 1993, pp. 695–701.

    Google Scholar 

  17. Simek, K., Pernthaler, J., Weinbauer, M.G., et al., Changes in bacterial community composition and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir, Appl. Environ. Microbiol., 2001, vol. 67, pp. 2723–2733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thingstad, T.F., Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems, Limnol., Oceanogr., 2000, vol. 46, no. 6, pp. 1320–1328.

    Article  Google Scholar 

  19. Tijdens, M., Van de Waal, D.B., Slovakova, H., et al., Estimates of bacterial and phytoplankton mortality caused by viral lysis and microzooplankton grazing in shallow eutrophic lake, Freshwater Biol., 2008, vol. 53, pp. 1126–1141.

    Article  Google Scholar 

  20. Weinbauer, M.G., Ecology of prokaryotic viruses, FEMS Microbiol. Rev., 2004, vol. 28, pp. 127–181.

    Article  CAS  PubMed  Google Scholar 

  21. Wommack, K.E. and Colwell, R.R., Virioplankton: viruses in aquatic ecosystems, Microbiol. Mol. Biol. Rev., 2000, vol. 64, pp. 69–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kopylov.

Additional information

Original Russian Text © A.I. Kopylov, D.B. Kosolapov, E.A. Zabotkina, T.S. Maslennikova, 2016, published in Biologiya Vnutrennykh Vod, 2016, No. 4, pp. 28–36.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopylov, A.I., Kosolapov, D.B., Zabotkina, E.A. et al. Distribution of viruses in the water column of the ice-covered Rybinsk Reservoir and their contribution to heterotrophic bacteria mortality. Inland Water Biol 9, 359–367 (2016). https://doi.org/10.1134/S1995082916040088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082916040088

Keywords

Navigation