Changes in biological characteristics of freshwater heterotrophic flagellates and cladocerans under the effect of metal oxide nano- and microparticles

Abstract

Data on the effect of nano- and microparticles of cerium and titanium dioxides and zinc oxide on the survival rate and reproduction of nanoflagellates and ceriodaphnia are given. The inhibitory effect of metal oxide nanoparticles on nanoflagellates Bodo saltans Ehrenberg manifested itself in a decrease in their population after 3–4 days of exposure. This effect was found to increase with agent concentrations. In the case of Ceriodaphnia affinis Lilljeborg, their reproductive characteristics showed a significant correlation with the concentrations of nanosize particles of the substances under consideration. Unlike zinc oxide, the microrparticles of titanium and cerium dioxides were less toxic than the respective nanoparticles.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Andreev, G.B., Minashkin, V.M., Nevskii, I.A., and Putilov, A.V., Materials Produced by Nanotechnology: Potential Risks in Obtaining and Using, Ross. Khim. Zh., 2008, vol. 52, no. 5, pp. 32–38.

    CAS  Google Scholar 

  2. 2.

    Bakaeva, E.N. and Nikanorov, A.M., Gidrobionty v otsenke kachestva vod sushi (Aquatic Animals in Assessing the Quality of Inland Waters), Moscow: Nauka, 2006.

    Google Scholar 

  3. 3.

    Glushkova, A.V., Radilov, A.S., and Rembovskii, V.R., Nanotechnology and Nanotoxicology—A Look at the Problem, Toksikol. Vestn., 2007, no. 6, pp. 4–8.

  4. 4.

    Kolesnichenko, A.V., Timofeev, M.A., and Protopova, M.V., Toxicity of Nanomaterials: 15 Years of Research, Ross. Nanotekhnol., 2008, vol. 3, nos. 3–4, pp. 54–63.

    Google Scholar 

  5. 5.

    Krysanov, E.Yu., Pavlov, D.S., Demidova, T.B., and Dgebuadze, Yu.Yu., Effect of Nanoparticles on Aquatic Organisms, Biol. Bull., 2010, vol. 37, no. 4, pp. 406–412.

    Article  Google Scholar 

  6. 6.

    Lakin, G.F., Biometriya (Biometrics), Moscow: Vysshaya Shkola, 1973.

    Google Scholar 

  7. 7.

    Tomilina, I.I., Test Organisms for Assessment of the Toxicity of Different Types of Contamination of Bottom Sediments, in Voprosy fiziologii i vodnoi toksikologii (Problems of Physiology and Aquatic Toxicology), Yaroslavl: Yaroslav. gos. un-t, 2003, pp. 83–86.

    Google Scholar 

  8. 8.

    Bai, W., Zhang, Z., Tian, W., et al., Toxicity of Zinc Oxide Nanoparticle to Zebrafish Embryo: a Physicochemical Study of Toxicity Mechanism, J. Nanopart. Res., 2010, vol. 12, pp. 1645–1654.

    Article  CAS  Google Scholar 

  9. 9.

    Baun, A., Hartmann, N.B., Grieger, K., and Kusk, K.O., Ecotoxicity of Engineered Nanoparticles to Aquatic Invertebrates: A Brief Review and Recommendations for Future Toxicity Testing, Ecotoxicology, 2008, vol. 17, pp. 387–395.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Boenigk, J. and Arndt, H., Particle Handling during Interception Feeding by Four Species of Heterotrophic Nanoflagellates, J. Euk. Microbiol., 2000, vol. 47, no. 4, pp. 350–358.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Dhawan, A. and Sharma, V., Toxicity Assessment of Nanomaterials: Methods and Challenges, Anal. Bioanal. Chem., 2010, vol. 398, pp. 589–605.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Frumin, G.T., Chuiko, G.M., Pavlov, D.F., and Menzykova, O.V., New Rapid Method to Evaluate the Median Effect Concentrations of Xenobiotics in Hydrobionts, Bull. Environ. Contam. Toxicol., 1992, vol. 49, pp. 361–367.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Griffitt, R.J., Luo, J., Gao, J., et al., Effects of Particle Composition and Species on Toxicity of Metallic Nanomaterials in Aquatic Organisms, Environ. Toxicol. Chem, 2008, vol. 27, no. 9, pp. 1972–1978.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Hall, S. and Bradley, T., Moore et al. Acute and Chronic Toxicity of Nano-Scale TiO2 to Freshwater Fish, Cladocerans and Green Algae, and Effects of Organic and Inorganic Substrate on TiO2 Toxicity, Nanotoxicology, 2009, no. 3, pp. 91–97.

  15. 15.

    Heinlaan, M., Ivask, A., Blinova, I., et al., Toxicity of Nanosized and Bulk ZnO, CuO and TiO2 to Bacteria Vibrio fisheri and Crustaceans Daphnia magna, Thamnocephalus platyurus, Chemosphere, 2008, vol. 71, pp. 1308–1316.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Hoet, P.M., Bruske-Hohlfeld, I., and Salata, O.V., Nanoparticles—Known and Unknown Health Risk, J. Nanobiotechnol., 2004, no. 2, pp. 2–12.

  17. 17.

    Holsapple, M.P. and Farland, W.H., Toxicological and Safety Evaluation of Nanomaterials, Toxicol. Sci., 2005, vol. 88, no. 1, pp. 12–17.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Hund-Rinke, K. and Simon, M., Ecotoxic Effect of Photocatalytic Active Nanoparticles TiO2 on Algae and Daphnids, Environ. Sci. Poll. Res., 2006, vol. 13, no. 4, pp. 1–8.

    Article  Google Scholar 

  19. 19.

    Lin, W., Huang, Y.W., Zhou, X.D., and Ma, Y., Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells, Int. J. Toxicol., 2006, vol. 25, no. 6, pp. 451–457.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Lovern, S.B. and Klaper, R., Daphnia magna Mortality when Exposed to Titanium Dioxide and Fullerene (C60) Nanoparticles, Environ. Toxicol. Chem., 2006, vol. 25, no. 4, pp. 1132–1137.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Lovern, S.B., Strickler, J.R., and Klaper, R., Behavioral and Physiological Changes in Daphnia magna When Exposed to Nanoparticle Suspensions (Titanium Dioxide, Nano-C60 and C60HxC70Hx), Environ. Sci. Technol., 2007, vol. 41, pp. 4465–4470.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Menard, A., Drobne, D., and Jemec, A., Ecotoxicity of Nanosized TiO2. Review of in vivo Data, Environ. Pollut., 2011, vol. 159, pp. 677–684.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Mitchell, G.C., Baker, J.H., and Sleigh, M.A., Feeding of a Freshwater Flagellate, Bodo saltans, on Diverse Bacteria, J. Protozool., 1988, vol. 35, no. 2, pp. 219–222.

    Google Scholar 

  24. 24.

    Mount, D.I. and Norberg, T.J., A Seven-Day Life-Cycle Cladoceran Toxicity Test, Environ. Toxicol. Chem., 1984, vol. 3, pp. 425–434.

    Article  CAS  Google Scholar 

  25. 25.

    Navarro, E., Baun, A., Behra, R., et al., Environmental Behavior and Ecotoxicity of Engineered Nanoparticles to Algae, Plants and Fungi, Ecotoxicology, 2008, vol. 17, pp. 372–386.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Nowack, B. and Bucheli, T.D., Occurrence, Behavior and Effects of Nanoparticles in the Environment, Environ. Pollut., 2007, vol. 110, pp. 5–22.

    Article  Google Scholar 

  27. 27.

    Park, E.J., Choi, J., Park, Y.K., and Park, K., Oxidative Stress Induced by Cerium Oxide Nanoparticles in Culture BEAS-2B Cells, Toxicology, 2008, vol. 245, nos. 1–2, pp. 90–100.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Simonet, B.M. and Valcareel, M., Monitoring Nanoparticle in the Environmental, Anal. Bioanal. Chem., 2009, vol. 393, pp. 17–21.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Sokal, R.R. and Rohlf, F.J., Biometry. The Principals and Practice of Statistics in Biological Research, New York: Freeman, 1995.

    Google Scholar 

  30. 30.

    Van Hoecke, K., Quik, J.T., Mankiewicz-Boczek, J., et al., Fate and Effects of CeO2 Nanoparticles in Aquatic Ecotoxicity Test, Environ. Sci. Technol., 2009, vol. 43, pp. 4537–4546.

    PubMed  Article  Google Scholar 

  31. 31.

    Zhu, X., Chang, Y., and Chen, Y., Toxicity and Bioaccumulation of TiO2 Nanoparticle Aggregates in Daphnia magna, Chemosphere, 2010, vol. 78, no. 3, pp. 209–215.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. I. Tomilina.

Additional information

Original Russian Text © I.I. Tomilina, V.A. Gremyachikh, A.P. Myl’nikov, V.T. Komov, 2011, published in Biologiya Vnutrennikh Vod, No. 4, 2011, pp. 79–88.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tomilina, I.I., Gremyachikh, V.A., Myl’nikov, A.P. et al. Changes in biological characteristics of freshwater heterotrophic flagellates and cladocerans under the effect of metal oxide nano- and microparticles. Inland Water Biol 4, 475–483 (2011). https://doi.org/10.1134/S1995082911040201

Download citation

Keywords

  • nanoparticles
  • toxicity
  • heterotrophic flagellates
  • ceriodaphnia