Skip to main content
Log in

The activity of digestive enzymes of the pike Esox lucius L. Infected with the cestode Triaenophorus nodulosus (Pallas)

  • Parasitology of Hydrobionts
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

It has been shown that protease activity increases and amylase activity decreases from the first to the fifth intestinal segment of pike, while lipase and esterase activities vary within fairly narrow limits. The level of proteolytic enzyme activities increases in pikes infected with Triaenophorus nodulosus (Pallas), but the invasion has no effect on amylase, lipase, or esterase activities. The T. nodulosus infection of pike had no substantial influence on glycogen or protein content in the hepatopancreas of fish. However, it was noted that the ratio of protease and amylase activities in the intestines changed toward an increase in the share of proteases and the share of protein in the hepatopancreas of infected fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davydov, O.N. and Kurovskaya, L.Ya., Parazitokhozyainnye otnosheniya pri tsestodozakh ryb (Host-Parasite Relationships in Fish Cestodosis), Kiev: Naukova Dumka, 1991.

    Google Scholar 

  2. Dobrovol’skii, A.A., Evlanov, I.A., and Shul’man, S.S., Parasitic System: Analysis of Structure and Strategy That Determine Their Stability, in Ekologicheskaya parazitologiya (Ecological Parasitology), Petrozavodsk: Karel. Nauch. Tsentr RAN, 1994, pp. 5–45.

    Google Scholar 

  3. Izvekova, G.I., Physiological Specificity of the Relationship between Triaenorhorus nodulosus (Cestoda) and Its Hosts—Fish, Parazitologiya, 2001, vol. 35, no. 1, pp. 60–68.

    CAS  Google Scholar 

  4. Kochetkov, G.A., Prakticheskoe rukovodstvo po enzimologii (A Practical Course in Enzymology), Moscow: Vysshaya Shkola, 1971.

    Google Scholar 

  5. Kuperman, B.I., Lentochnye chervi roda Triaenophorus — parazity ryb (eksperimental’naya sistematika, ekologiya) (Tapeworms of the Genus Triaenorhorus—Fish Parasites (Experimental Systematics and Ecology)), Leningrad: Nauka, 1973.

    Google Scholar 

  6. Kuperman, B.I., Funktsional’naya morfologiya nizshikh tsestod (Functional Morphology of Lower Cestodes), Leningrad: Nauka, 1988.

    Google Scholar 

  7. Kurovskaya, L.Ya., Conjugation of the Digestive Processes in the Bothrioscephalus acheilognathi-Carp System, Parazitologiya, 1991, no. 5, pp. 441–449.

  8. Pronina, S.V. and Pronin, N.M., Vzaimootnosheniya v sistemakh gel’minty — ryby (na tkanevom, organnom i organizmennom urovnyakh) (Relationships in Worm-Fish Systems (Tissue, Organ, and Whole-Body Levels)), Moscow: Nauka, 1988.

    Google Scholar 

  9. Ugolev, A.M. and Kuz’mina, V.V., Pishchevaritel’nye protsessy i adaptatsii u ryb (Digestive Processes and Adaptations in Fish), St. Petersburg: Gidrometeoizdat, 1993.

    Google Scholar 

  10. Alarcón, F.J., Martinez, T.F., Barranco, P., et al., Digestive Proteases during Development of Larvae of Red Palm Weevil, Rhynchophorus errugineus (Olivier, 1790) (Coleoptera: Curculionidae), Insect Biochem. Mol. Biol., 2002, vol. 32, pp. 265–274.

    Article  PubMed  Google Scholar 

  11. Deguara, S., Jauncey, K., and Agius, C., Enzyme Activities and pH Variations in the Digestive Tract of Gilthead Sea Bream, J. Fish. Biol., 2003, vol. 62, pp. 1033–1043.

    Article  CAS  Google Scholar 

  12. Gawlicka, A., Parent, B., Horn, M.H., et al., Activity of Digestive Enzymes in Yolk-Sac Larvae of Atlantic Halibut (Hippoglossus hippoglossus): Indication of Readiness for First Feeding, Aquaculture, 2000, vol. 184, pp. 303–314.

    Article  CAS  Google Scholar 

  13. Harpaz, S. and Uni, Z., Activity of Intestinal Mucosal Brush Border Membrane Enzymes in Relation to the Feeding Habits of Three Aquaculture Fish Species, Comp. Biochem. Physiol., 1999, vol. 124A, pp. 155–160.

    CAS  Google Scholar 

  14. Izvekova, G.I., Kuperman, B.I., and Kuz’mina, V.V., Digestion and Digestive-Transport Surfaces in Cestodes and Their Fish Hosts, Comp. Biochem. Physiol., 1997, vol. 118 A, no. 4, pp. 1165–1171.

    Article  CAS  Google Scholar 

  15. Jónás, E., Ra-gyanszki, M., Oláh, J., and Boross, L., Proteolytic Digestive Enzymes of Carnivorous (Silurus glanis L.), herbivorous (Hypophthalmichthys molitrix Val.) and Omnivorous (Cyprinus carpio L.) Fishes, Aquaculture, 1983, vol. 30, pp. 145–154.

    Article  Google Scholar 

  16. Lundstedt, L.M., Melo, J.F.B., and Moraes, G., Digestive Enzymes and Metabolic Profile of Pseudoplatystoma orruscans (Teleostei: Siluriformes) in Response to Diet Composition, Comp. Biochem. Physiol., 2004, vol. 137 B, pp. 331–339.

    CAS  Google Scholar 

  17. Mayberry, L.F., Bristol, J.R., Cajas, O., and Tellez, G., Small Intestinal Sucrase Activity during Experimental Infectious with Nippostrongylus brasiliensis and/or Eimeria nieschulzi in Rats, Z. Parasitenk., 1986, vol. 72, no. 4, pp. 561–564.

    Article  PubMed  CAS  Google Scholar 

  18. Mead, R.W., Histochemical Study on the Distribution of Amylase Activity within the Intestine of the Rat and the Effect of Cestode (Hymenolepis diminuta) Infection, Trans. Amer. Microsc. Soc., 1976, vol. 95, pp. 183–188.

    Article  CAS  Google Scholar 

  19. Mead, R.W. and Roberts, L.S., Intestinal Digestion and Absorption of Starch in the Intact Rat: Effects of Cestode (Hymenolepis diminuta) Infection, Comp. Biochem. Physiol., 1972, vol. 41 A, pp. 749–760.

    Article  Google Scholar 

  20. Mettrick, D.F., Hymenolepis diminuta: The Microbiota, Nutritional and Physico-Chemical Gradients in the Small Intestine of Uninfected and Parasitized Rats, Can. J. Physiol. Pharmacol., 1971, vol. 49, pp. 972–984.

    Article  PubMed  CAS  Google Scholar 

  21. Montgomery, R., Determination of Glycogen, Arch. Biochem. Biophys., 1957, vol. 67, pp. 378–386.

    Article  PubMed  CAS  Google Scholar 

  22. Pappas, P.W., Tryptic and Protease Activities in the Normal and Hymenolepis diminuta-Infected Rat Small Intestine, J. Parasit., 1978, vol. 64, pp. 562–564.

    Article  PubMed  CAS  Google Scholar 

  23. Prabhakaran, S.K. and Kamble, S.T., Purification and Characterization of an Esterase Isozyme from Insecticide Resistant and Susceptible Strains of German Cockroach, Blattella germanica (L.), Insect Biochem. Mol. Biol., 1995, vol. 25, pp. 519–524.

    Article  PubMed  CAS  Google Scholar 

  24. Sklan, D., Prag, T., and Lupatsch, I., Structure and Function of the Small Intestine of the Tilapia Oreochromis niloticus and Oreochromis aureus (Teleostei, Cichlidae), Aquaculture Res, 2004, vol. 35, pp. 350–357.

    Article  Google Scholar 

  25. Tengjaroenkul, B., Smith, B.J., Caceci, T., and Smith, S.A., Distribution of Intestinal Enzyme Activities along the Intestinal Tract of Cultured Nile Tilapia, Oreochromis niloticus L., Aquaculture, 2000, vol. 182, pp. 317–327.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Izvekova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izvekova, G.I., Solovyev, M.M. The activity of digestive enzymes of the pike Esox lucius L. Infected with the cestode Triaenophorus nodulosus (Pallas). Inland Water Biol 5, 113–118 (2012). https://doi.org/10.1134/S1995082911040080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082911040080

Keywords

Navigation