Skip to main content
Log in

Influence of various factors on upper lethal temperature (review)

  • Ichthyology
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The influence of various factors on the upper lethal temperature (ULT) for the vital functions of freshwater fishes was investigated. The methods used for determining the lethal and sublethal temperatures in freshwater fishes were characterized. It was indicated that the acclimation temperature, heating rate, season, age of animals, time of day, and other factors significantly change the ULTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atlas presnovodnykh ryb Rossii (Atlas of Freshwater Fishes of Russia), Moscow: Nauka, 2002, vol. 1.

  2. Golovanov, V.K., Ecological and Physiological Aspects of Thermoregulatory Behavior of Freshwater Fish, in Povedenie i raspredelenie ryb: dokl. soveshch. (Behavior and Distribution of Fishes: Proc. Meeting), Borok, 1996, pp. 16–40.

  3. Golovanov, V.K. and Valtonen, T., Variability of Thermoadaptive Properties of Rainbow Trout Oncorchunchus mukiss Walbaum in Ontogeny, Biol. Vnutr. Vod, 2000, no. 2, pp. 106–115.

  4. Golovanov, V.K., Svirskii, A.M., and Izvekov, E.I., Temperature Requirements of Fishes of Rybinsk Reservoir and Their Implementation in the Wild, in Sovremennoe sostoyanie rybnykh zapasov Rybinskogo vodokhranilishcha (Current State of Fish Stocks of the Rybinsk Reservoir), Yaroslavl: Yaroslav. Gos.-Tekhn. Univ., 1997, pp. 92–123.

    Google Scholar 

  5. Golovanov, V.K., Smirnov, A.K., and Boldakov, A.M., The Effect of Thermal Pollution of Water Reservoirs in the Upper Volga on Fish Populations: Current Status and Prospects, in Aktual’nye problemy ratsional’nogo ispol’zovaniya biologicheskikh resursov vodokhranilishch (Relevant Problems of Sustainable Use of Biological Resources of Water Reservoirs), Rybinsk: Dom Pechati, 2005, pp. 59–81.

    Google Scholar 

  6. Golovanov, V.K. and Smirnov, A.K., Influence of the Water Heating Rate Upon Thermal Tolerance in Common Carp (Cyprinus carpio L.) during Different Seasons, Vopr. Ikhtiol., 2007, vol. 47, no. 7, pp. 538–544.

    Google Scholar 

  7. Ivanova, M.N. and Lapkin, V.V., Effect of Temperature on the Living Activity and Distribution of Freshwater Smelt in Water Bodies, in Biologiya vnutrennikh vod: Inform. byul (Inland Water Biology: Inform. Bull.), Leningrad, 1982, vol. 55, pp. 37–41.

    Google Scholar 

  8. Lapkin, V.V., Golovanov, V.K., Svirskii, A.M., and Sokolov, V.A., Thermoadaptive Characteristics of the Bream Abramis brama (L.) in the Rybinsk Reservoir, in Struktura lokal’noi populyatsii u presnovodnykh ryb (The Structure of Local Populations of Freshwater Fishes), Rybinsk: Inst. Biol. Vnutr. Vod AN SSSR, 1990, pp. 37–85.

    Google Scholar 

  9. Lapkin, V.V., Svirskii, A.M., and Golovanov, V.K., Age Dynamics of Selected and Lethal Temperatures of Fish, Zool. Zh., 1981, vol. 40, no. 12, pp. 1792–1801.

    Google Scholar 

  10. Mikhailenko, V.G., Ambiguity of Resistance of Organisms, Usp. Sovrem. Biol., 2002, vol. 122, no. 4, pp. 334–341.

    Google Scholar 

  11. Mordukhai-Boltovskoi, F.D., Problem of the Influence of Thermal and Nuclear Power Plants in the Hydrobiological Regime of Water Bodies (Review), in Ekologiya organizmov vodokhranilishch-okhladitelei (Ecology of Organisms of Cooling Reservoirs), Leningrad: Nauka, 1975, pp. 7–69.

    Google Scholar 

  12. Nikol’skii, G.V., Ekologiya ryb (Fish Ecology), Moscow: Vysshaya Shkola, 1974.

    Google Scholar 

  13. Ozernyuk, N.D., Mekhanizmy adaptatsii (Mechanisms of Adaptation), Moscow: Nauka, 1992.

    Google Scholar 

  14. Ozernyuk, N.D., Temperaturnye adaptatsii (Temperature Adaptations), Moscow: Mosk. Gos. Univ., 2000.

    Google Scholar 

  15. Privol’nev, T.I., Effect of Wastewater of Thermal Power Plants on Fish Organism and Behavior, in Tr. Koordinatsionnogo soveshch. po gidrotekhnike (Proc. Coordination Workshop on Hydraulic Engineering), 1965, no. 24, pp. 39–50.

  16. Smirnov, A.K. and Golovanov, V.K., The Influence of Various Factors on the Thermal Stability of Goldfish Carassius auritus (L.), Biol. Vnutr. Vod, 2004, no. 3, pp. 103–109.

  17. Smirnov, A.K. and Golovanov, V.K., Seasonal Dynamics of the Upper Lethal Temperatures for Juvenile Carp and Perch Fishes, in Biologicheskie resursy Belogo Morya i vnutrennikh vodoemov Evropeiskogo Severa: Mezhdunar. Konf. Vologda (Biological Resources of the White Sea and Enclosed Water Bodies of the European North: Proc. Intern. Conf.), Vologda, 2005.

  18. Smirnov, A.K. and Golovanov, V.K., Comparison of Temperature Tolerance of Juveniles Fish from the Rybinsk Reservoir, Vopr. Ikhtiol., 2005, vol. 45, no. 5, pp. 410–412.

    Google Scholar 

  19. Khlebovich, V.V., Akklimatsiya zhivotnykh organizmov (Acclimation of Animals), Leningrad: Nauka, 1981.

    Google Scholar 

  20. Alabaster, J.S. and Lloyd, R., Water Quality Criteria for Freshwater Fish, London: FAO and Butterworth Scientific, 1980.

    Google Scholar 

  21. Angilletta, M.J., Thermal Adaptation: A Theoretical and Empirical Synthesis, Oxford: Oxford Univ. Press, 2009.

    Google Scholar 

  22. Anitha, B., Chandra, N., Gopinath, P.M., et al., Genotoxicity Evaluation of Heat Shock in Gold Fish (Carassius auritus), Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2000, vol. 469, no. 1, pp. 1–8.

    Article  CAS  Google Scholar 

  23. Becker, C.D. and Genoway, R.G., Evaluation of the Critical Thermal Maximum for Determining Thermal Tolerance of Freshwater Fish, Environ. Biol. Fish, 1979, vol. 4, no. 3, pp. 245–256.

    Article  Google Scholar 

  24. Beitinger, T.L. and Bennett, W.A., Quantification of the Role of Acclimation Temperature in Temperature Tolerance of Fishes, Environ. Biol. Fish., 2000, vol. 58, no. 3, pp. 277–288.

    Article  Google Scholar 

  25. Beitinger, T.L., Bennet, W.A., and McCauley, R.W., Temperature Tolerances of North American Freshwater Fishes Exposed to Dynamic Changes in Temperature, Environ. Biol. Fish, 2000, vol. 58, no. 3, pp. 237–275.

    Article  Google Scholar 

  26. Bettolli, P.W., Neill, W.H., and Kelsch, S.W., Temperature Preference and Heat Resistance of Grass Carp, Ctenopharyngodon idella (Valenciennes), Bighead Carp, Hypophtalmichthys nobilis (Gray), and Their F1 Hybrid, J. Fish. Biol., 1985, vol. 27, no. 3, pp. 239–247.

    Article  Google Scholar 

  27. Bonin, J.D. and Spotila, J.R., Temperature Tolerance of Larval Muskellunge (Esox masquinongy Mitchill) and F1 Hybrids Reared under Hatchery Conditions, Comp. Biochem. Physiol., 1978, vol. 59A, pp. 245–248.

    Article  Google Scholar 

  28. Bulger, A.J., A Daily Rhytms in Heat Tolerance in the Salt Marsh Fish Fundulus heteroclitus, J. Exp. Zool., 1984, vol. 230, no. 1, pp. 11–16.

    Article  Google Scholar 

  29. Bulger, A.J. and Tremaine, S.C., Magnitude of Seasonal Effects on Heat Tolerance in Fundulus heteroclitus, Physiol. Zool., 1985, vol. 58, no. 2, pp. 197–204.

    Google Scholar 

  30. Cortemeglia, C. and Beitinger, T.L., Projected US Distributions of Transgenic and Wildtype Zebra Danios, Danio rerio, Based on Temperature Tolerance Data, J. Therm. Biol., 2006, vol. 31, no. 5, pp. 422–428.

    Article  Google Scholar 

  31. Cox, D.K., Effects of Three Heating Rates on the Critical Thermal Maximum of Bluegill, in Thermal Ecology, Springfield, 1974, pp. 158–163.

  32. Cross, E.E. and Rawding, R.S., Acute Thermal Tolerance in the Round Goby, Apollonia melanostoma (Neogobius melanostomus), J. Therm. Biol., 2009, vol. 34, no. 2, pp. 85–92.

    Article  Google Scholar 

  33. Currie, R.J., Bennett, W.N., and Beitinger, T.L., Critical Thermal Minima and Maxima of Three Freshwater Game-Fish Species Acclimated to Constant Temperatures, Environ. Biol. Fish, 1998, vol. 51, no. 2, pp. 187–200.

    Article  Google Scholar 

  34. Diaz, F. and Bückle, L.F., Effect of the Critical Thermal Maximum on the Preferred Temperatures of Ictalurus punctatus Exposed to Constant and Fluctuating Temperatures, J. Therm. Biol., 1999, vol. 24, no. 3, pp. 155–160.

    Article  Google Scholar 

  35. Elliott, J.M., Some Aspects of Thermal Stresses on Freshwater Teleosts, in Stress in Fish, London: Academic, 1981, pp. 209–249.

    Google Scholar 

  36. Elliott, J.M. and Elliott, J.A., The Critical Thermal Limits for the Bullhead, Cottus gobio, from Three Populations in North-West England, Freshwater Biol., 1995, no. 33, pp. 411–418.

  37. Feldmeth, C.R., Stone, E.A., and Brown, J.H., An Increased Scope for Thermal Tolerance upon Acclimating Pupfish (Cyprinodon) to Cycling Temperatures, J. Comp. Physiol., 1974, vol. 89, no. 1, pp. 39–44.

    Article  Google Scholar 

  38. Feminella, J.W. and Matthews, W., Intraspecific Differences in Thermal Tolerance of Etheostoma spectabile (Agassiz) in Constant Versus Fluctuating Environments, J. Fish. Biol., 1984, vol. 25, no. 4, pp. 455–461.

    Article  Google Scholar 

  39. Fields, R., Lowe, S.S., and Kaminski, C., et al., Critical and Chronic Thermal Maximum of Northern and Florida Largemouth Bass and Their Reciprocal F1 and F2 Hybrids, Trans. Am. Fish. Soc., 1987, vol. 116, no. 6, pp. 856–863.

    Article  Google Scholar 

  40. Ford, T. and Beitinger, T.L., Temperature Tolerance in the Goldfish, Carassius auritus, J. Therm. Biol., 2005, vol. 30, no. 2, pp. 147–152.

    Article  Google Scholar 

  41. Fry, F.E.J., Effects of the Environment on Animal Activity, Publ. Ontario Fish. Res. Lab., 1947, no. 68, p. 62.

  42. Fry, F.E.J., The Effect of Environmental Factors on the Physiology of Fish, in Fish Physiology, New York: Academic, 1971, vol. 6, pp. 1–98.

    Google Scholar 

  43. Golovanov, V.K., The Ecological and Evolutionary Aspects of Thermoregulation Behavior of Fish, J. Ichthyol., 2006, vol. 46, suppl. 2, pp. 180–187.

    Article  Google Scholar 

  44. Hassan, K.C. and Spotila, J.R., The Effect of Acclimation on the Temperature Tolerance of Young Muskellunge Fry, in Thermal Ecology, Springfield, 1976, pp. 136–140.

  45. Hesthagen, J.H., Temperature Selection and Avoidance in the Sand Goby, Pomatoschistus minutus (Pallas), Collected at Different Seasons, Environ. Biol. Fish, 1979, vol. 4, no. 4, pp. 369–377.

    Article  Google Scholar 

  46. Hlohowskyj, I. and Wissing, T.E., Seasonal Changes in the Critical Thermal Maxima of Fantail (Etheostoma flabellare), Greenside (Etheostoma blennioides), and Rainbow (Etheostoma caeruleum) Darters, Can. J. Zool., 1985, vol. 63, no. 7, pp. 1629–1633.

    Article  Google Scholar 

  47. Hoar, W.C., Seasonal Variations in the Resistance of Goldfish to Temperature, Trans. Roy. Soc. Canada, 1955, Sec. 5, vol. 49, pp. 25–34.

    Google Scholar 

  48. Hokanson, K.E.F., Temperature Requirements of Some Percids and Adaptations to the Seasonal Temperature Cycle, J. Fish. Res. Board Can., 1977, vol. 34, no. 10, pp. 1524–1550.

    Article  Google Scholar 

  49. Horoszewicz, L., Lethal and “Disturbing” Temperatures in Some Fish Species from Lakes with Normal and Artificially Elevated Temperature, J. Fish. Biol., 1973, vol. 5, no. 2, pp. 165–181.

    Article  Google Scholar 

  50. Hutchison, V.H., Factors Influencing Thermal Tolerance of Individual Organisms, ERDA (Energy Res. Dev. Adm.) Symp. Ser., 1976, CONF750425, pp. 10–26.

  51. Johnson, C.R., Diel Variations in the Thermal Tolerance of Gambusia affinis (Pisces. Poeciliidae), Comp. Biochem. Physiol., 1976, vol. 55A, no. 4, pp. 337–340.

    Article  Google Scholar 

  52. Lohr, S.R., Byorth, P.A., Kaya, P.A., and Dwyer, W.P., High-Temperature Tolerances of Fluvial Arctic Grayling and Comparisions with Summer River Temperatures of Big Hole River, Montana, Trans. Am. Fish. Soc., 1996, vol. 125, no. 6, pp. 933–939.

    Article  Google Scholar 

  53. Lowe, C.H. and Heath, W.G., Behavioral and Physiological Responses to Temperature in the Desert Pupfish Cyprinodon macularius, Physiol. Zool., 1969, vol. 42, no. 1, pp. 53–59.

    Google Scholar 

  54. Lutterschmidt, W.I. and Hutchison, V.H., The Critical Thermal Maximum: Data Support the Onset of Spasms as the Definitive End Point, Can. J. Zool., 1997, vol. 75, no. 6, pp. 1553–1560.

    Article  Google Scholar 

  55. Lutterschmidt, W.I. and Hutchison, V.H., The Critical Thermal Maximum: History and Critique, Can. J. Zool., 1997, vol. 75, no. 6, pp. 1561–1574.

    Article  Google Scholar 

  56. Matthews, W.J., Geographic Variation in Thermal Tolerance of a Widespread Minnow Notropis lutrensis of the North American Mid-West, J. Fish. Biol., 1986, vol. 28, no. 4, pp. 407–417.

    Article  Google Scholar 

  57. Mora, C. and Maya, M.F., Effect of the Rate of Temperature Increase of Dynamic Method on Heat Tolerance of Fishes, J. Therm. Biol., 2006, vol. 31, no. 4, pp. 337–341.

    Article  Google Scholar 

  58. Paladino, F.V., Spotila, J.R., Schubauer, J.P., et al., The Critical Thermal Maximum: A Technique Used to Elucidate Physiological Stress and Adaptation in Fishes, Rev. Can. Biol., 1980, vol. 39, no. 2, pp. 115–122.

    Google Scholar 

  59. Prosser, C.L., Comparative Animal Physiology, Philadelphia: W, 1973, vol. 2.

    Google Scholar 

  60. Schmidt-Nielsen, K., Animal Physiology: Adaptation and Environment, Cambridge: Cambridge Univ. Press, 1997.

    Google Scholar 

  61. Spaas, J.T., Contribution to the Comparative Physiology and Genetics of the European Salmonidae. III. Temperature Resistance at Different Ages, Hydrobiologia, 1960, vol. 15, nos. 1–2, pp. 78–88.

    Article  Google Scholar 

  62. Spieler, R.E., Noeske, T.A., and Seegert, G.L., Diel Variation in Sensitivity of Fishes to Potentially Lethal Stimuli, Progr. Fish. Cult., 1977, vol. 39, no. 3, pp. 144–147.

    Article  CAS  Google Scholar 

  63. Stauffer, J.R., Influence of Temperature on Fish Behavior, in Power Plants. Effects on Fish and Shellfish Behavior, New York: Academic, 1980, pp. 103–141.

    Google Scholar 

  64. Stauffer, J.R., Vann, D.K., and Hocutt, C.H., Effects of Salinity on Preferred and Lethal Temperatures of the Blackchin Tilapia, Saratherodon melanotheron, Water Res. Bull., 1984, vol. 20, no. 5, pp. 771–775.

    Article  Google Scholar 

  65. Sumner, F.B. and Doudoroff, P., Some Experiments upon Temperature Acclimatization and Respiratory Metabolism in Fishes, Biol. Bull., 1938, no. 74, pp. 403–429.

  66. Watenpaugh, D.E., Beitinger, T.L., and Huey, D.W., Temperature Tolerance of Nitrite-Exposed Channel Catfish, Trans. Am. Fish. Soc., 1985, vol. 114, no. 2, pp. 274–278.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Golovanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovanov, V.K. Influence of various factors on upper lethal temperature (review). Inland Water Biol 5, 105–112 (2012). https://doi.org/10.1134/S1995082911040079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082911040079

Keywords

Navigation