The effect that nickel, copper, and zinc salts have on seed germination and initial ontogenesis of water parsnip (Sium latifolium L.) and wood club-rush (Scirpus silvaticus L.)

Abstract

The effect that nickel, copper, and zinc sulfates have on seed germination and the initial stages of the ontogenesis of water parsnip and wood club-rush has been investigated. Nickel and copper in the concentration range of 250–500 mg/l and zinc at a concentration of 500 mg/l were the most toxic for water parsnip seeds, while, for the wood club-rush seeds, maximum toxicity was observed at Ni and Cu concentrations ranging from 50 to 500 mg/l and at Zn concentrations of 250–500 mg/l. The development of water parsnip seedlings was normal at Ni concentrations of 1–25 mg/l, Cu concentrations of 1–10 mg/l, and Zn concentrations up to 50 mg/l; the development of wood club-rush seedlings was normal at a Ni concentration of 1 mg/l, and Cu and Zn concentrations of 1–25 mg/l. A further increase in the concentration caused photosynthesis suppression, slower growth of the vegetation organs, and their subsequent necrosis. Water parsnip is more resistant to the toxicants.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Burdin, K.S. and Zolotukhina, E.Yu., Tyazhelye metally v vodnykh rasteniyakh (akkumulyatsiya i toksichnost’) (Heavy Metals in Aquatic Plants (Accumulation and Toxicity)), Moscow: Dialog MGU, 1998.

    Google Scholar 

  2. 2.

    Voichik, M., Pavlikovskaya-Pavlega, A., and Tukiendorf, A., Physiological and Ultrastructural Responses of Arabidopsis Plants to Excess Copper and Changes in the Level of Reduced Glutathione, Russ. J. Plant Physiol., 2009, vol. 56, no. 6, pp. 906–916.

    Google Scholar 

  3. 3.

    Gapeeva, M.V., Biogeochemical Distribution of Heavy Metals in the Ecosystem of the Rybinsk Reservoir, in Sovremennoe sostoyanie ekosistemy rybinskogo vodokhranilishcha (Current State of the Ecosystem of the Rybinsk Reservoir), St. Petersburg: Gidrometeoizdat, 1993, pp. 42–49.

    Google Scholar 

  4. 4.

    Ipatova, V.I. and Dmitrieva, A.G., The Responses of Higher Aquatic Plants to Pollute the Environment with Heavy Metals, in Gidrobotanika-2005: Mater. V Vseros. Shk.-Konf. po Vodnym Makrofitam (Hydrobotany 2005: Proc. V All-Russia School-Conference on Water Macrophytes), Rybinsk, 2006, pp. 258–261.

  5. 5.

    Kaznina, N.M., Titov, A.F., Laidinen, G.F., and Talanov, A.V., Setaria viridis Tolerance of High Zinc Concentration, Biol. Bull., 2009, no. 6, pp. 575–581.

  6. 6.

    Kurilenko, V.V. and Osmolovskaya, N.G., EcologicalBiogeochemical Role of Macrophytes in Aquatic Ecosystems of Urbanized Territories (An Example of Small Water Bodies of St. Petersburg), Ekologiya, 2006, no. 3, pp. 163–167.

  7. 7.

    Lapirov, A.G., The Influence of Some Heavy Metals on Seed Germination and Seedling Development of Alisma plantago-aquatica (Alismataseae) and Bidens tripartita (Asteraseae), Rastit. Resursy, 2008, no. 4, pp. 98–106.

  8. 8.

    Lapirov, A.G. and Lebedeva, O.A., Effect of Nitrate Salts of Some Heavy Metals on the Initial Stages of Batrachium trichophyllum (Chaix) Bosch. Ontogeny, Vestn. Tomsk. Gos. Univ., 2009, vol. 323, pp. 364–369.

    Google Scholar 

  9. 9.

    Lapirov, A.G. and Mikryakova, T.F., The Influence of Copper on the Formation of Sprouts in Alisma plantagoaquatica L., Biol. Vnutr. Vod, 2006, no. 4, pp. 72–76.

  10. 10.

    Maleva, M.G., Nekrasova, G.F., and Bezel’, V.S., The Response of Hydrophytes to Environmental Pollution with Heavy Metals, Russ. J. Ecol., 2004, no. 4, pp. 266–272.

  11. 11.

    Mikryakova, T.F., The Growth of Duckweed at Various Concentrations of Copper, in Biol. Vnutr. Vod: Inform. Byul. (Inland Water Biology: Inf. Bull.), Leningrad, 1982, issue 55, pp. 28–31.

  12. 12.

    Perevoznikov, M.A. and Bogdanova, E.A., Tyazhelye metally v presnovodnykh ekosistemakh (Heavy Metals in Freshwater Ecosystems), St. Petersburg: Gos. NII Ozer. Rech. Ryb. Khoz., 1999.

    Google Scholar 

  13. 13.

    Seregin, I.V., Kozhevnikova, A.D., Kazyumina, E.M., and Ivanov, V.B., Nickel Toxicity and Distribution in Maize Roots, Russ. J. Plant Physiol., 2003, vol. 50, no. 5, pp. 711–718.

    Article  CAS  Google Scholar 

  14. 14.

    Cobbert, C. and Coldsbrough, P., Phytochelatins and Metallothioneis: Roles in Heavy Metal Detoxitication and Homeostasis, Annu. Rev. Plant Biol., 2002, vol. 53, pp. 159–182.

    Article  Google Scholar 

  15. 15.

    Fernandes, J.C. and Henriques, F.S., Biochemical, Physiological and Structural of Excess Copper in Plants, Bot. Rev., 1991, vol. 57, pp. 246–273.

    Article  Google Scholar 

  16. 16.

    Khudsar, T., Mahmooduzzafar, N., Jqbal, M., and Sairam, R.K., Zinc-Induced Changes in MorphoPhysiological and Biochemical Parameters in Artemisia annua, Biol. Plant., 2004, vol. 48, pp. 255–260.

    Article  CAS  Google Scholar 

  17. 17.

    Maksymiek, W., Effect of Copper on Cellular Processes in Higher Plants, Photosynthetica, 1997, vol. 34, pp. 321–342.

    Article  Google Scholar 

  18. 18.

    Mishra, D. and Kar, M., Nickel in Plant Growth and Metabolism, Bot. Rev., 1974, vol. 40, no. 4, pp. 395–452.

    Article  CAS  Google Scholar 

  19. 19.

    Shipley, K. and Parent, M., Germination Responses of 64 Wetland Species in Relation to Seed Size, Minimum Time to Reproduction and Seedling Relative Growth Rate, Func. Ecol., 1991, vol. 5, no. 1, pp. 111–118.

    Article  Google Scholar 

  20. 20.

    Stoyanova, D.P. and Tchakolova, E.S., CadmiumInduced Ultrastructural Changes in Chloroplasts of the Leaves and Stems Parenchyma in Myriophyllum spicatum, Physiol. Plant., 1997, vol. 34, pp. 241–248.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. G. Krylova.

Additional information

Original Russian Text © E.G. Krylova, 2011, published in Biologiya Vnutrennikh Vod, No. 4, 2011, pp. 72–78.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krylova, E.G. The effect that nickel, copper, and zinc salts have on seed germination and initial ontogenesis of water parsnip (Sium latifolium L.) and wood club-rush (Scirpus silvaticus L.). Inland Water Biol 4, 468–474 (2011). https://doi.org/10.1134/S1995082911030138

Download citation

Keywords

  • nickel, copper, and zinc sulfates
  • water parsnip
  • wood club-rush
  • seed germination
  • seedling development