Inland Water Biology

, 4:301 | Cite as

Long-term dynamics of Lake Baikal pelagic phytoplankton under climate change

Phytoplankton, Phytobenthos, and Phytoperiphyton

Abstract

The effect that climate change in the Lake Baikal region has on the state of the lake plankton is discussed. The increase in water temperature in the photic layer and chlorophyll a content during direct stratification is demonstrated with the use of a database containing the results of plankton observations from 1951 to 2000. The number of small-cell algae belonging to the summer complex seems to increase, while the number of endemic large cell algae developing under the ice is characterized by negative trends.

Keywords

phytoplankton chlorophyll a Lake Baikal climate change 

References

  1. 1.
    Izmest’eva, L.R., Mur, M.V., Khempton, S.E., and Zilov, E.A., Seasonal Dynamics of Mass Genera of Phytoplankton in Lake Baikal, Izv. Samar. NTs RAN, 2006, vol. 8, no. 3, pp. 191–196.Google Scholar
  2. 2.
    Kozhov, M.M., Biologiya ozera Baikal (Biology of Lake Baikal), Moscow: Akad. Nauk SSSR, 1962.Google Scholar
  3. 3.
    Kozhov, M.M., Ocherki po baikalovedeniyu (Essays on Baikal History), Irkutsk: Vost.-Sib. Knizh. Izd., 1972.Google Scholar
  4. 4.
    Svidetel’stvo ob ofitsial’noi registratsii bazy dannykh no. 2005620028 “Baza dannykh “PLANKTON”, vydannoe Federal’noi sluzhboi po intellektual’noi sobstvennosti, patentam i tovarnym znakam 21.01.2005 g (Certificate of Official Registration of the Database no. 2005620028 “Database Plankton”, issued by the Federal Service for Intellectual Property, Patents and Trademarks, January 21, 2005).Google Scholar
  5. 5.
    Bradbury, J.P., Bezrukova, Y.V., Chernyaeva, G.P., et al. A Synthesis of Post-Glacial Diatom Records from Lake Baikal, J. Paleolimnol., 1994, vol. 10, no. 3, pp. 213–252.CrossRefGoogle Scholar
  6. 6.
    Elliott, J.A., Thackeray, S.J., Huntingford, C., et al. Combining a Regional Climate Model with a Phytoplankton Community Model to Predict Future Changes in Phytoplankton in Lakes, Freshwater Biol., 2005, vol. 50, no. 8, pp. 1404–1411.CrossRefGoogle Scholar
  7. 7.
    Fietz, S., Kobanova, G., Izmest’eva, L., and Nicklisch, A., Regional, Vertical and Seasonal Distribution of Phytoplankton and Photosynthetic Pigments in Lake Baikal, J. Plankton Res., 2005, vol. 27, no. 8, pp. 793–810.CrossRefGoogle Scholar
  8. 8.
    Genkal, S.I. and Bondarenko, N.A., Are the Lake Baikal Diatoms Endemic?, Hydrobiologia, 2006, vol. 568, Suppl. 1, pp. 143–153.CrossRefGoogle Scholar
  9. 9.
    Hajnal, E. and Padisak, J., Analysis of Long-Term Ecological Status of Lake Balaton Based on the ALMOBAL Phytoplankton Database, Hydrobiologia, 2008, vol. 599, no. 1, pp. 227–237.CrossRefGoogle Scholar
  10. 10.
    Hampton, S.E., Izmest’eva, L.R., Moore, M.V., et al. Sixty Years of Environmental Change in the in the World’s Largest Freshwater Lake—Lake Baikal, Siberia, Glob. Change Biol., 2008, vol. 14, no. 8, pp. 1947–1958.CrossRefGoogle Scholar
  11. 11.
    Huber, V., Adrian, R., and Gerten, D., Phytoplankton Response to Climate Warming Modified by Trophic State, Limnol. Oceanogr., 2008, vol. 53, no. 1, pp. 1–13.CrossRefGoogle Scholar
  12. 12.
    Hutchinson, G.E., A Treatise on Limnology, New York: Willey, 1957, vol. 1: Geography, Physics and Chemistry.Google Scholar
  13. 13.
    Hutchinson, G.E., A Treatise on Limnology, New York: Willey, 1967, vol. 2: Introduction to Lake Biology and Limnoplankton.Google Scholar
  14. 14.
    Jühnk, K.D., Huisman, J., Sharpies, J., et al., Summer Heatwaves Promote Blooms of Harmful Cyanobacteria, Glob. Change Biol., 2008, vol. 14, no. 3, pp. 495–512.CrossRefGoogle Scholar
  15. 15.
    Kalff, J., Limnology: Inland Water Ecosystems, New Jersey: Prentice Hall, 2002.Google Scholar
  16. 16.
    Kamenir, Y., Winder, M., Dubinsky, Z., et al., Lake Tahoe vs. Lake Kinneret Phytoplankton: Comparison of Long-Term Taxonomic Size Structure Consistency, Aquat. Sci., 2008, vol. 70, no. 2, pp. 195–203.CrossRefGoogle Scholar
  17. 17.
    Kozhov, M.M., Lake Baikal and Its Life, The Hague: W. Junk Publ., 1963.Google Scholar
  18. 18.
    Lake Baikal. Evolution and Biodiversity, Leiden: Backhuys Publ., 1998.Google Scholar
  19. 19.
    Livingstone, D.M., Ice Break-Up on Southern Lake Baikal and Its Relationship to Local and Regional Air Temperatures in Siberia and to North Atlantic Oscillation, Limnol. Oceanogr., 1999, vol. 44, no. 6, pp. 1486–1497.CrossRefGoogle Scholar
  20. 20.
    Mackay, A.W., The Paleoclimatology of Lake Baikal: A Diatom Synthesis and Perspectives, Earth-Sci. Rev., 2007, vol. 82, nos. 3–4, pp. 181–215.CrossRefGoogle Scholar
  21. 21.
    Michelutti, N., Wolfe, A.P., Vinebrooke, R.D., et al., Recent Productivity Increases in Arctic Lakes, Geophys. Rev. Lett., 2005, vol. 32, no. 19, p. L19715. doi: 10.1029/2005GL023693CrossRefGoogle Scholar
  22. 22.
    Moore, M.V., Hampton, S.E., Izmest’eva, L.R., et al. Climate Change and the World’s “Sacred Sea”—Lake Baikal, Siberia, BioScience, 2009, vol. 59, no. 5, pp. 405–417.CrossRefGoogle Scholar
  23. 23.
    Rae, R. and Vincent, W.F., Phytoplankton Production in Subarctic Lake and River Ecosystems: Development of a Photosynthesis-Temperature-Irradiance Model, J. Plankton Res., 1998, vol. 20, no. 7, pp. 1293–1312.CrossRefGoogle Scholar
  24. 24.
    Report of SCOR-UNESCO Working Group 17. Determination of Photosynthetic Pigments, Paris: UNESCO, 1964.Google Scholar
  25. 25.
    Schwörbel, J. and Brendelberger, H., Einführung in die Limnologie. 9 Auflage, München: Elsevier, 2005.Google Scholar
  26. 26.
    Solomon, S., Qin, D., Manning, M., et al., IPCC, 2007: Summary for Policymakers, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge Univ. Press, 2007, pp. 79–131.Google Scholar
  27. 27.
    Straškrabova, V., Izmest’yeva, L.R., Maksimova, E.A., et al., Primary Production and Microbial Activity in the Euphotic Zone of Lake Baikal (Southern Basin) During Late Winter, Global Planetary Change, 2005, vol. 46, nos. 1–4, pp. 57–73.CrossRefGoogle Scholar
  28. 28.
    Todd, M.C. and Mackay, A.W., Large-Scale Climatic Controls on Lake Baikal Ice Cover, J. Clim., 2003, vol. 16, no. 19, pp. 3186–3199.CrossRefGoogle Scholar
  29. 29.
    Vadadi-Fülöp, Cs., Türei, D., Sipkay, Cs., et al., Comparative Assessment of Climate Change Scenarios Based on Aquatic Food Web Modeling, Environ. Model Assess., 2008, vol. 14, no. 5, pp. 563–576, doi: 10.1007/s10666-008-9158-2.CrossRefGoogle Scholar
  30. 30.
    Wetzel, R.G., Limnology: Lake and River Ecosystems, London; Sydney; Tokyo: Acad. Press, 2001.Google Scholar
  31. 31.
    Weyhenmeyer, G.A., Westü, A.-K., and Willen, E., Increasingly Ice-Free Winters and Their Effects on Water Quality in Sweden’s Largest Lakes, Hydrobiologia, 2008, vol. 599, no. 1, pp. 111–118.CrossRefGoogle Scholar
  32. 32.
    Winder, M. and Hunter, D.A., Temporal Organization of Phytoplankton Communities Linked To Physical Forcing, Oecologia, 2008, vol. 156, no. 1, pp. 179–192.PubMedCrossRefGoogle Scholar
  33. 33.
    Winder, M., Renter, J.E., and Schladow, S.G., Lake Warming Favours Small-Sized Planktonic Diatom Species, Proc. Royal Soc. B, 2008, vol. 276, no. 1656, pp. 427–435, doi: 10.1098/rspb.2008.1200.CrossRefGoogle Scholar
  34. 34.
    Yoshioka, T., Ueda, S., Khodzher, T.V., et al., Distribution of Dissolved Organic Carbon in Lake Baikal and Its Watershed, Limnology, 2002, vol. 3, no. 3, pp. 159–168.CrossRefGoogle Scholar
  35. 35.
    Zohary, T., Changes to the Phytoplankton Assemblage of Lake Kinneret After Decades of a Predictable, Repetitive Pattern, Freshwater Biol., 2004, vol. 49, no. 10, pp. 1355–1371.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • L. R. Izmest’eva
    • 1
  • E. A. Silow
    • 1
  • E. Litchman
    • 2
  1. 1.Scientific Research Institute of BiologyIrkutsk State UniversityIrkutsk-3Russia
  2. 2.Michigan State UniversityHickory CornersUSA

Personalised recommendations