Skip to main content
Log in

Temperature effects of interspecies competition between cladoceran species in experimental conditions

  • Zooplankton, Zoobenthos, and Zooperiphyton
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

In experiments with mono- and polycultures the hypothesis that small-size cladoceran species (Diaphanosoma brachyurum Lievin and Ceriodaphnia reticulata Jurine) are more successful at higher temperatures whereas large-size species (Daphnia magna Straus and Simocephalus vetulus O.F. Müller) under low temperatures was tested. The biomass of Simocephalus vetulus exceeded the biomass of the other species both in mono- and polycultures. An increase of temperature from 18 up to 25°C led to reduction of the biomass of all species. The largest species, D. magna, responded to higher temperature by increased mortality. We assume that the reduction of the biomass of the large species allowed the small C. reticulata to develop successfully in mixed cultures at higher temperature; however it was completely eliminated at lower temperature. Apparently, the survival strategy of large cladocerans involves delayed juvenile development at lower temperatures. However, at higher temperatures, juvenile development of large species accelerates, and their mortality increases. Individual strategies of the studied species to survive at different temperatures are analyzed. On the whole the increase of temperature can result in decrease of the biomass of cladocerans and prevailence of small-size species over large-size ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balushkina, E.V. and Vinberg, G.G., Dependence between Body Weight and Length in Planktonic Aminals, in Eksperimental’nye i polevye issledovaniya biologicheskikh osnov produktivnosti ozer (Experimental and Field Research of Biological Principles of Lake Productivity), Leningrad: Nauka, 1978, pp. 58–72.

    Google Scholar 

  2. Sushchenya, L.M., Semenchenko, V.P., Semenyuk, G.A., and Trubetskova, I.L., Produktsiya planktonnykh rakoobraznykh i faktory sredy (Production of Planktonic Crustaceans and Environmental Factors), Minsk: Nauka i Tekhnika, 1990.

    Google Scholar 

  3. Feniova, I.Yu. and Budaev, S.V., Estimation of the Possibility of Cladoceran Invasion and Survival under Conditions of Competition in Mesotrophic Lake Glubokoe, Ekologiya, 2006, no. 3, pp. 221–226 [Russ. J. Ecol. (Eng. Transl.), 2006, vol. 37, no. 3, pp. 200–204].

  4. Achenbach, L. and Lampert, W., Effects of Elevated Temperatures on Threshold Food Concentrations and Possible Competitive Abilities of Differently Sized Cladoceran Species, Oikos, 1997, vol. 79, pp. 469–476.

    Article  Google Scholar 

  5. Atkinson, D., Temperature and Organism Size a Biological Law for Ectotherms?, Adv. Ecol. Res., 1994, vol. 25, pp. 21–58.

    Google Scholar 

  6. Brooks, J.L., The Effects of Prey Size Selection by Lake Planktivores, Syst. Zool., 1968, vol. 17, pp. 273–291.

    Article  Google Scholar 

  7. Dawidowicz, P. and Wielanier, M., Costs of Predator Avoidance Reduce Competitive Ability of Daphnia, Hydrobiologia, 2004, vol. 526, pp. 165–169.

    Article  Google Scholar 

  8. DeMott, W.R., The Role of Competition in Zooplankton Succession, in Plankton Ecology: Succession in Plankton Communities, New York: Springer, 1989, pp. 195–252.

    Google Scholar 

  9. DeMott, W.R. and Kerfott, W.C., Competition among Cladocerans: Nature of the Interactions between Bosmina and Daphnia, Ecology, 1982, vol. 63, pp. 1949–1966.

    Article  Google Scholar 

  10. Dzialowski, A., O’Brien, W.J., and Swaffar, S.M., Range Expansion and Potential Dispersal Mechanisms of the Exotic Cladoceran Daphnia lumholtzi, J. Plankton Res., 2000, vol. 22, pp. 2205–2223.

    Article  Google Scholar 

  11. Dzialowski, A.R. and Smith, V.H., Nutrient Dependent Effects of Consumer Identity and Diversity on Freshwater Ecosystem Function, Freshwater Biol., 2007, vol. 53, pp. 148–158.

    Google Scholar 

  12. Gliwicz, Z.M., Food Thresholds and Body Size in Cladocerans, Nature, 1990, vol. 343, pp. 638–640.

    Article  Google Scholar 

  13. Gliwicz, Z.M., Between Hazards of Starvation and Risk of Predation: The Ecology of Offshore Animals, in Excellence in Ecology, Oldendorf/Luhe: Int. Ecol. Inst., 2003, vol. 12, 379 p.

    Google Scholar 

  14. Hillbright-Ilkowska, A., Ejsmont-Karabin, J., and Weglenska, T., Long-Term Changes in the Composition, Productivity and Trophic Efficiency in the Zooplankton Community of Heated Lakes near Konin (Poland), Ekol. Pol., 1988, vol. 36, pp. 115–144.

    Google Scholar 

  15. Hooper, D.U., Chapin F.S., Ewell J.J. Et Al. Effects of Biodiversity on Ecosystem Functioning: a Consensus of Current Knowledge, Ecol. Monogr., 2005, vol.75, pp. 3–35.

    Article  Google Scholar 

  16. Ives, A.R. and Hughes, J.B., General Relationships between Species Diversity and Stability in Competitive Systems, Am. Nat., 2002, vol. 159, pp. 388–395.

    Article  PubMed  Google Scholar 

  17. Jiang, L., Density Compensation Can Cause No Effect of Biodiversity on Ecosystem Functioning, Oikos, 2007, vol. 116, pp. 324–334.

    Article  Google Scholar 

  18. Korinek, V., Chapter 3: Cladocera, in A Guide to Tropical Freshwater Zooplankton. Identification, Ecology and Impacts on Fisheries, Leiden: Backhuys Publ., 2002, pp. 69–97.

    Google Scholar 

  19. Korovchinsky, N.M., Evolutionary Morphological Development of the Cladocera of the Superfamily Sidoidea and Life Strategies of Crustaceans of Continental Waters, Int. Rev. Hydrobiol., 1990, vol. 75, pp. 179–186.

    Google Scholar 

  20. Kratz, T.K., Frost, T.M., and Magnuson, J.J., Inferences from Spatial and Temporal Variability in Ecosystems: Long-Term Zooplankton Data from Lakes, Am. Nat., 1987, vol. 129, pp. 830–846.

    Article  Google Scholar 

  21. Loreau, M., Separating Sampling and Other Effects in Biodiversity Experiments, Oikos, 1998, vol. 82, pp. 600–602.

    Article  Google Scholar 

  22. Moore, M.V., Folt, C.L., and Stemberger, R.S., Consequences of Elevated Temperatures for Zooplankton Assemblages in Temperate Lakes, Arch. Hydrobiol., 1996, vol. 135, pp. 289–319.

    Google Scholar 

  23. Naeem, S., Species Redundancy and Ecosystem Reliability, Conserv. Biol., 1998, vol. 12, pp. 39–45.

    Article  Google Scholar 

  24. Perrin, N., Why Are Offspring Born Larger When It Is Colder? Phenotypic Plasticity for Offspring Size in the Cladoceran Simocephalus vetulus (Müller), Funct. Ecol., 1988, vol. 2, pp. 283–288.

    Article  Google Scholar 

  25. Perrin, N., About Berrigan and Charnov’s Life-History Puzzle, Oikos, 1995, vol. 73, pp. 137–139.

    Article  Google Scholar 

  26. Pinto-Coelho, R., Pinel-Alloul, B., Méthot, G., and Havens, K.E., Crustacean Zooplankton in Lakes and Reservoirs of Temperate and Tropical Regions: Variation with Trophic Status, Can. J. Fish. Aquat. Sci., 2005, vol. 62, pp. 348–361.

    Article  CAS  Google Scholar 

  27. Romanovsky, Yu.E., Individual Growth Rate As a Measure of Competitive Advantages in Cladoceran Crustaceans, Int. Rev. Hydrobiol., 1984, vol. 69, pp. 613–632.

    Article  Google Scholar 

  28. Sarma, S.S.S., Nandini, S., and Gulati, R.D., Life History Strategies of Cladocerans: Comparisons of Tropical and Temperate Taxa, Hydrobiologia, 2005, vol. 542, pp. 315–333.

    Article  Google Scholar 

  29. Semenchenko, V.P., Razlutskij, V.I., Feniova, I.Yu., and Aisbulatov, D.N., Biotic Relations Affecting Species Structure in Zooplankton Communities, Hydrobiologia, 2007, vol. 579, pp. 219–231.

    Article  Google Scholar 

  30. Smyly, W.J.P., Vertical Distribution and Abundance of Ceriodaphnia quadrangular (O.F. Müller) (Crustacea, Cladocera), Freshwater Biol., 1996, vol. 35, pp. 25–34.

    Article  Google Scholar 

  31. Srivastava, D.S. and Vellend, M., Biodiversity Ecosystem Function Research: Is It Relevant to Conservation?, Annu. Rev. Ecol. Syst., 2005, vol. 36, pp. 267–294.

    Article  Google Scholar 

  32. Steiner, C.F., Darcy-Hall, T.L., Dorn, N.J., et al., The Influence of Consumer Diversity and Indirect Facilitation on Trophic Level Biomass and Stability, Oikos, 2005, vol. 110, pp. 556–566.

    Article  Google Scholar 

  33. Strecker, A.L., Cobb, T.P., and Vinebrooke, R.D., Effects of Experimental Greenhouse Warming on Phytoplankton and Zooplankton Communities in Fishless Alpine Ponds, Limnol., Oceanogr., 2004, vol. 49, pp. 1182–1190.

    Article  CAS  Google Scholar 

  34. Tilman, D., Lehman, C.L., and Thomson, K.T., Plant Diversity and Ecosystem Productivity: Theoretical Considerations, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 1857–1861.

    Article  PubMed  CAS  Google Scholar 

  35. Van Doorslaer, W., Stocks, R., Jeppesen, E., and Meester, L., Adaptive Microevolutionary Responses to Simulated Global Warming in Simocephalus vetulus: A Mesocosm Study, Global Change Biol, 2007, vol. 13, pp. 878–886.

    Article  Google Scholar 

  36. Von Bertalanffy, L., Principles and Theory of Growth, in Fundamental Aspects of Normal and Malignant Growth, Amsterdam: Elsevier, 1960, pp. 137–259.

    Google Scholar 

  37. Weetman, D. and Atkinson, D., Evaluation of Alternative Hypotheses to Explain Temperature -Induced Life History Shifts in Daphnia, J. Plankton Res., 2004, vol. 26, pp. 107–116.

    Article  Google Scholar 

  38. Zaret, T.M., Strategies for Existence of Zooplankton Prey in Homogeneous Environments, Ver. Int. Ver. Theor. Angew. Limnol., 1975, vol. 19, pp. 1484–1489.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Biologiya Vnutrennikh Vod, No. 1, 2011, pp. 71–78.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feniova, I.Y., Razlutsky, V.I. & Palash, A.L. Temperature effects of interspecies competition between cladoceran species in experimental conditions. Inland Water Biol 4, 65–71 (2011). https://doi.org/10.1134/S1995082910041017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082910041017

Keywords

Navigation