Skip to main content
Log in

Numerical Simulation of Injection of Polydisperse Gas-Droplet Suspension into a Flow of Dusty Medium

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In the paper, we numerically simulated the dynamics of a polydisperse gas suspension in a channel. The dynamics of the carrier medium were described by the two-dimensional Navier–Stokes equation for a compressible heat-conducting gas. The mathematical model assumed a difference in gas suspension fractions based on the linear size of dispersed inclusions and the density of the material. The system of mathematical equations was integrated by the finite-difference method. To overcome numerical oscillations, a nonlinear correction scheme was applied to the grid function. The influence of the aerodynamic drag force, the dynamic Archimedes force and the force of added masses on the dynamics of dispersed inclusions in the gas was taken into account. It was assumed that a dusty medium moves in the channel, and droplet fractions are blown through the side surface. The influence of the dispersity of droplet inclusions on the spatial distribution of droplet fractions, as well as the influence of the injection of droplet fractions on the distribution of the dust fraction of a gas suspension, was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

REFERENCES

  1. R. I. Nigmatulin, Principles of the Mechanics of Heterogeneous Media (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  2. M. E. Dejch and G. A. Filippov, Gas Dynamics of Two-Phase Media (Energoizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  3. C. P. Kiselev, G. A. Ruev, A. P. Trunev, V. M. Fomin, and M. S. Shavaleev, Shock-Waved Processes in Two-Component and Two-Phase Media (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  4. A. G. Kutushev, Mathematical Simulation of Wave Processes in Aerodispersed and Porous Media (Nedra, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  5. A. V. Fedorov, V. M. Fomin, and T. A. Hmel, Wave Processes in Gas-Suspensions of Metal Particles (Novosibirsk, Parallel, 2015) [in Russian].

    Google Scholar 

  6. A. Y. Varaksin and M. V. Protasov, ‘‘The effect of gas injection on the protection of body surfaces streamlined by a two-phase flow,’’ High Temp. 55, 945–948 (2017).

    Article  Google Scholar 

  7. M. A. Pakhomov and V. I. Terekhov, ‘‘Effect of droplet evaporation on the flow structure and heat and mass transfer in a confined swirling gas-droplet flow downstream of a tube sudden expansion,’’ Thermophys. Aeromech. 25, 833–843 (2018).

    Article  Google Scholar 

  8. L. H. Ingel, ‘‘Nonlinear interaction between two components of motion upon precipitation of a heavy particle in a shear flow,’’ Tech. Phys. 57, 1585–1588 (2012).

    Article  Google Scholar 

  9. A. G. Laptev and E. A. Lapteva, ‘‘Numerical model of heat and mass transfer and disperse phase separation in high-speed dispersed-annular gas and liquid flows,’’ Tech. Phys. 67, 393–400 (2022).

    Article  Google Scholar 

  10. D. A. Nazarov, D. S. Sinitsyn, N. A. Mosunova, and A. A. Sorokin, ‘‘Simulating the behavior of fission product aerosols in the containment,’’ Therm. Eng. 69, 683–690 (2022).

    Article  Google Scholar 

  11. I. V. Golubkina and A. N. Osiptsov, ‘‘Partly and fully dispersed compression waves in a gas-droplet mixture with phase transitions,’’ Fluid Dyn. 57, 261–272 (2022).

    Article  MathSciNet  Google Scholar 

  12. D. V. Sadin, ‘‘Numerical and analytical study of the expansion of a gas suspension in a closed shock tube,’’ Nauch.-Tekh. Vedom. SPb Politekh. Univ., Fiz.-Mat. Nauki 14 (4), 40–49 (2021).

    Google Scholar 

  13. G. S. Yeom and K. S. Chang, ‘‘Shock wave diffraction about a wedge in a gas-microdroplet mixture,’’ Int. J. Heat Mass Transfer 53, 5073–5088 (2010).

    Article  Google Scholar 

  14. R. Saurel, P. Boivin, and O. Le Metayer, ‘‘A general formulation for cavitating, boiling and evaporating flows,’’ Comput. Fluids 128, 53–64 (2016).

    Article  MathSciNet  Google Scholar 

  15. A. K. Kapila, D. W. Schwendeman, J. R. Gambino, and W. D. Henshaw, ‘‘A numerical study of the dynamics of detonation initiated by cavity collapse,’’ Shock Waves 25, 545–572 (2015).

    Article  Google Scholar 

  16. H. Watanabe, A. Matsuo, A. Chinnayya, K. Matsuoka, A. Kawasaki, and J. Kasahara, ‘‘Numerical analysis of the mean structure of gaseous detonation with dilute water spray,’’ J. Fluid Mech. 887 (2020).

  17. Y. Lin Yoo and S. Hong-Gye, ‘‘Numerical investigation of an interaction between shock waves and bubble in a compressible multiphase flow using a diffuse interface method,’’ Int. J. Heat Mass Transfer 127, 220–221 (2018).

    Google Scholar 

  18. M. A. Davydova, O. G. Chkhetiani, N. T. Levashova, and A. L. Nechaeva, ‘‘On assessing the contribution of secondary vortex structures to the transport of aerosols in the atmospheric boundary layer,’’ Fluid Dyn. 57, 998 (2022).

    Article  MathSciNet  Google Scholar 

  19. V. N. Piskunov, ‘‘Analytical and numerical results on the kinetics of coagulation and particle decomposition processes,’’ J. Appl. Math. Mech. 76, 688–705 (2012).

    Article  MathSciNet  Google Scholar 

  20. A. I. Grigoriev, N. Y. Kolbneva, and S. O. Shiryaeva, ‘‘Nonlinear monopole and dipole acoustic radiation of a weakly charged drop oscillating in a uniform electrostatic field,’’ Fluid Dyn. 57, 982 (2022).

    Article  MathSciNet  Google Scholar 

  21. P. P. Osipov and I. M. Almakaev, ‘‘Simulation of particles drift and acoustic streaming of polytropic viscous gas in a closed tube,’’ Lobachevskii J. Math. 40, 802–807 (2019).

    Article  MathSciNet  Google Scholar 

  22. R. F. Mardanov, S. K. Zaripov, and V. F. Sharafutdinov, ‘‘New mathematical model of fluid flow around nanofiber in a periodic cell,’’ Lobachevskii J. Math. 43, 2206–2221 (2022).

    Article  MathSciNet  Google Scholar 

  23. A. K. Gilfanov, T. S. Zaripov, S. S. Sazhin, and O. Rybdylova, ‘‘An adaptive moment inversion algorithm for the quadrature methods of moments in particle transport modelling,’’ Lobachevskii J. Math. 43, 2107–2117 (2022).

    Article  MathSciNet  Google Scholar 

  24. V. F. Formalev, B. A. Garibyan, and S. A. Kolesnik, ‘‘Mathematical modeling of heat transfer in a plate during plasma spraying of thermal protection on it,’’ Lobachevskii J. Math. 44, 2292–2198 (2023).

    Article  MathSciNet  Google Scholar 

  25. R. F. Mardanov, ‘‘Determination of the parameters of the brinkman model for a porous medium composed of nanofibers,’’ Lobachevskii J. Math. 43, 2970–2976 (2022).

    Article  MathSciNet  Google Scholar 

  26. A. K. Gilfanov, R. R. Salahov, and T. S. Zaripov, ‘‘Mathematical modeling of evaporating droplets dynamics in a vortex ring using moment method,’’ Lobachevskii J. Math. 41, 982–991 (2020).

    Article  MathSciNet  Google Scholar 

  27. D. A. Tukmakov, ‘‘Numerical study of polydisperse aerosol dynamics with the drops destruction,’’ Lobachevskii J. Math. 40, 824–827 (2019).

    Article  MathSciNet  Google Scholar 

  28. D. A. Gubaidullin and D. A. Tukmakov, ‘‘Numerical modeling of the shock waves reflection from a firm surface in mono—and polydisperse gas suspensions,’’ Lobachevskii J. Math. 42, 104–109 (2021).

    Article  MathSciNet  Google Scholar 

  29. D. A. Tukmakov, ‘‘One-dimensional unsteady numerical model of gas suspension flow caused by gravitational sedimentation of particles with constant velocity,’’ J. Appl. Mech. Tech. Phys. 63, 1218–1226 (2022).

    Article  MathSciNet  Google Scholar 

  30. D. A. Tukmakov, ‘‘Nonstationary one-dimensional matematical model of the dynamics of incompressible two-phase medium,’’ Tech. Phys. 67, 736–742 (2023).

    Article  Google Scholar 

  31. D. A. Tukmakov, ‘‘Numerical simulation of oscillations of aerosol with a low dispersed phase concentration in a closed tube by the continuum mathematical model,’’ Tech. Phys. 67, 764–770 (2023).

    Article  Google Scholar 

  32. C. A. Fletcher, Computation Techniques for Fluid Dynamics (Springer, Berlin, 1988).

    Book  Google Scholar 

  33. A. L. Tukmakov, ‘‘Model of motion and sedimentation of a charged gas suspension in an electric field,’’ J. Eng. Phys. Thermophys. 87, 38–47 (2014).

    Article  Google Scholar 

  34. I. F. Muzafarov and S. V. Utyuzhnikov, ‘‘Application of compact difference schemes to the study of unsteady flows of compressible gas,’’ Mat. Model. 5 (3), 74–83 (1993).

    MathSciNet  Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation no. 23-21-00363

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Tukmakov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted by D. A. Gubaidullin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tukmakov, D.A. Numerical Simulation of Injection of Polydisperse Gas-Droplet Suspension into a Flow of Dusty Medium. Lobachevskii J Math 45, 540–550 (2024). https://doi.org/10.1134/S1995080224010517

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080224010517

Keywords:

Navigation