Skip to main content
Log in

Learning Velocity Model for Complex Media with Deep Convolutional Neural Networks

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The paper considers the problem of velocity model acquisition for a complex media based on boundary measurements. The acoustic model is used to describe the media. We used an open-source dataset of velocity distributions to compare the presented results with the previous works directly. Forward modeling is performed using the grid-characteristic numerical method. The inverse problem is solved using deep convolutional neural networks. Modifications for a baseline UNet architecture are proposed to improve both structural similarity index measure and quantitative correspondence of the velocity profiles with the ground truth. We evaluate our enhancements and demonstrate the statistical significance of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. J. Ye, S. Ito, and N. Toyama, ‘‘Computerized ultrasonic imaging inspection: From shallow to deep learning,’’ Sensors 18, 3820 (2018). https://doi.org/10.3390/s18113820

    Article  Google Scholar 

  2. G. Tripathi, H. Anowarul, K. Agarwal, and D. K. Prasad, ‘‘Classification of micro-damage in piezoelectric ceramics using machine learning of ultrasound signals,’’ Sensors 19, 4216 (2019). https://doi.org/10.3390/s19194216

    Article  Google Scholar 

  3. D. Perdios, M. Vonlanthen, F. Martinez, M. Arditi, and J.-P. Thiran, ‘‘Single-shot CNN-based ultrasound imaging with sparse linear arrays,’’ in Proceedings of the 2020 IEEE International Ultrasonics Symposium IUS (2020), pp. 1–4. https://doi.org/10.1109/IUS46767.2020.9251442

  4. A. S. Stankevich, I. B. Petrov, and A. V. Vasyukov, ‘‘Numerical solution of inverse problems of wave dynamics in heterogeneous media with convolutional neural networks,’’ in Smart Modeling for Engineering Systems (2021), pp. 235–246. https://doi.org/10.1007/978-981-33-4619-2_18

  5. D. Patel, R. Tibrewala, A. Vega, L. Dong, N. Hugenberg, and A. A. Oberai, ‘‘Circumventing the solution of inverse problems in mechanics through deep learning: Application to elasticity imaging,’’ Comput. Methods Appl. Mech. Eng. 353, 448–466 (2019). https://doi.org/10.1016/j.cma.2019.04.045

    Article  MathSciNet  Google Scholar 

  6. A. U. Waldeland and A. H. S. Solberg, ‘‘Salt classification using deep learning,’’ in Proceedings of the 79th EAGE Conference and Exhibition 2017 (2017), pp. 1–5. https://doi.org/10.3997/2214-4609.201700918

  7. A. U. Waldeland, A. C. Jensen, L. J. Gelius, and A. H. S. Solberg, ‘‘Convolutional neural networks for automated seismic interpretation,’’ Leading Edge 37, 529–537 (2018). https://doi.org/10.1190/tle37070529.1

    Article  Google Scholar 

  8. Y. Shi, X. Wu, and S. Fomel, ‘‘Automatic salt-body classification using deep-convolutional neural network,’’ in SEG Technical Program Expanded Abstracts 2018 (2018), pp. 1971–1975. https://doi.org/10.1190/segam2018-2997304.1

    Article  Google Scholar 

  9. T. Zhao, ‘‘Seismic facies classification using different deep convolutional neural networks,’’ in SEG Technical Program Expanded Abstracts 2018 (2018), pp. 2046–2050. https://doi.org/10.1190/segam2018-2997085.1

    Article  Google Scholar 

  10. Y. Alaudah, P. Michalowicz, M. Alfarraj, and G. AlRegib, ‘‘A machine-learning benchmark for facies classification,’’ Interpretation 7, SE175–SE187 (2019). https://doi.org/10.1190/INT-2018-0249.1

    Article  Google Scholar 

  11. L. Baroni, R. M. Silva, R. S. Ferreira, D. Civitarese, D. Szwarcman, and E. V. Brazil, ‘‘Penobscot dataset: Fostering machine learning development for seismic interpretation,’’ arXiv: 1903.12060 (2019).

  12. M. Salvaris, M. Kaznady, V. Paunic, I. Karmanov, A. Bhatia, W. H. Tok, and S. Chikkerur, ‘‘Deepseismic: A deep learning library for seismic interpretation,’’ in Proceedings of the 1st EAGE Digitalization Conference and Exhibition (2020), pp. 1–5. https://doi.org/10.3997/2214-4609.202032086

  13. M. Alfarraj and G. AlRegib, ‘‘Semi-supervised learning for acoustic impedance inversion,’’ in SEG Technical Program Expanded Abstracts 2019 (2019), pp. 2298–2302. https://doi.org/10.1190/segam2019-3215902.1

    Article  Google Scholar 

  14. L. Wang, D. Meng, B. Wu, and N. Liu, ‘‘Seismic inversion via closed-loop fully convolutional residual network and transfer learning,’’ in SEG Technical Program Expanded Abstracts 2020 (2020), pp. 1521–1525. https://doi.org/10.1190/segam2020-3428004.1

    Article  Google Scholar 

  15. F. Yang and J. Ma, ‘‘Deep-learning inversion: A next-generation seismic velocity model building method,’’ Geophysics 84, R583–R599 (2019). https://doi.org/10.1190/geo2018-0249.1

    Article  Google Scholar 

  16. V. Das, A. Pollack, U. Wollner, and T. Mukerji, ‘‘Convolutional neural network for seismic impedance inversion,’’ Geophysics 84, R869–R880 (2019). https://doi.org/10.1190/geo2018-0838.1

    Article  Google Scholar 

  17. M. Araya-Polo, S. Farris, and M. Florez, ‘‘Deep learning-driven velocity model building workflow,’’ Leading Edge 38, 822–900 (2019). https://doi.org/10.1190/tle38110872a1.1

    Article  Google Scholar 

  18. M. J. Park and M. D. Sacchi, ‘‘Automatic velocity analysis using convolutional neural network and transfer learning,’’ Geophysics 85, V33–V43 (2020). https://doi.org/10.1190/geo2018-0870.1

    Article  Google Scholar 

  19. K. A. Beklemysheva, A. V. Vasyukov, A. O. Kazakov, and I. B. Petrov, ‘‘Grid-characteristic numerical method for low-velocity impact testing of fiber-metal laminates,’’ Lobachevskii J. Math. 39, 874–883 (2018). https://doi.org/10.1134/S1995080218070065

    Article  MathSciNet  Google Scholar 

  20. K. Beklemysheva, V. Golubev, I. Petrov, and A. Vasyukov, ‘‘Determining effects of impact loading on residual strength of fiber-metal laminates with grid-characteristic numerical method,’’ Chin. J. Aeronaut. 34, 1–12 (2021). https://doi.org/10.1016/j.cja.2020.07.013

    Article  Google Scholar 

  21. V. I. Golubev, ‘‘The usage of grid-characteristic method in seismic migration problems,’’ in Smart Modeling for Engineering Systems (2019), pp. 143–155. https://doi.org/10.1007/978-3-030-06228-6_13

  22. V. Golubev, I. Nikitin, and A. Ekimenko, ‘‘Simulation of seismic responses from fractured MARMOUSI2 model,’’ AIP Conf. Proc. 2312, 050006 (2020). https://doi.org/10.1063/5.0035495

  23. V. Golubev, A. Shevchenko, and I. Petrov, ‘‘Simulation of seismic wave propagation in a multicomponent oil deposit model,’’ Int. J. Appl. Mech. 12, 2050084 (2020). https://doi.org/10.1142/S1758825120500842

  24. A. Stankevich, I. Nechepurenko, A. Shevchenko, L. Gremyachikh, A. Ustyuzhanin, and A. Vasyukov, ‘‘Numerical nine-shot seismo records for 1600 acoustic impedance distributions,’’ Zenodo, 5515485 (2021). https://doi.org/10.5281/zenodo.5515485

  25. O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks for biomedical image segmentation,’’ in Medical Image Computing and Computer-Assisted Intervention (2015), pp. 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

    Book  Google Scholar 

  26. N. Kanopoulos, N. Vasanthavada, and R. L. Baker, ‘‘Design of an image edge detection filter using the Sobel operator,’’ IEEE J. Solid-state Circuits 23, 358–367 (1988). https://doi.org/10.1109/4.996

    Article  Google Scholar 

  27. D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ arXiv: 1412.6980 (2014).

  28. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality assessment: From error visibility to structural similarity,’’ IEEE Trans. Image Process. 13, 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  29. A. Paszke, S. Gross, et al., ‘‘PyTorch: An imperative style, high-performance deep learning library,’’ arXiv: 1912.01703 (2019).

  30. S. S. Shapiro and M. B. Wilk, ‘‘An analysis of variance test for normality (complete samples),’’ Biometrika 52, 591–611 (1965). https://doi.org/10.2307/2333709

    Article  MathSciNet  Google Scholar 

  31. H. Scheffe, The Analysis of Variance (Wiley, New York, 1999).

    Google Scholar 

Download references

Funding

AV and AS are supported by RFBR project 18-29-02127 for their work on establishing a numerical pipeline and creating the dataset. LG is supported by the Basic Research Program at the National Research University Higher School of Economics for his work on forward-modeling, and inverse problem approaches. AU is supported by RSF project 19-71-30020 for his work on ablation study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Stankevich, I. O. Nechepurenko, A. V. Shevchenko, L. I. Gremyachikh, A. E. Ustyuzhanin or A. V. Vasyukov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted by A. V. Lapin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stankevich, A.S., Nechepurenko, I.O., Shevchenko, A.V. et al. Learning Velocity Model for Complex Media with Deep Convolutional Neural Networks. Lobachevskii J Math 45, 336–345 (2024). https://doi.org/10.1134/S1995080224010499

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080224010499

Keywords:

Navigation