Skip to main content
Log in

Protostellar Cores Formation in the Collision of Spherical and Oblate Clouds

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The formation of new star systems most often occurs in molecular clouds, dense filamentary structures, and Bok globules. The increase in density to prestellar values in such structures is caused by hydrodynamic shock interactions. In this paper, a study was conducted to investigate the impact of the interaction between molecular clouds of varying shapes, radius, and density distribution over the radius. A new three-dimensional program was tested, in which a high-resolution PPM method was applied. In addition, the analytical solutions of the Poisson equation were compared to the calculation of the gravitational potential for a centrally condensed sphere, as well as the Chandrasekhar solution for an ellipsoid. The convergence of analytical and numerical solutions is demonstrated. Calculations of collisions of spherical and elliptical molecular clouds were carried out. The simulation showed that the results of the interaction depend on several factors: the initial velocity of the collision, the mass of clouds, the law of density distribution over the radius and clouds shape. Supersonic turbulence is one of the main reasons for the formation of dynamic prestellar structures. The evolution of superdense substances formation begins when they gather in turbulent flows or are formed by supersonic collisions between molecular clouds. This process continues until these areas reach the density required for star formation. Depending on various factors, these superdense formations can either collapse and form new star systems or disintegrate, returning the substance to the interstellar medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. J. H. Jeans, ‘‘The stability of a spherical nebula,’’ Phil. Trans. R. Soc. 199 (312–320), 1–53 (1902). https://doi.org/10.1098/rsta.1902.0012

  2. R. Zavala-Molina, J. Ballesteros-Paredes, A. Gazol, and A. Palau, ‘‘The effect of tidal forces on the Jeans instability criterion in star-forming regions,’’ arXiv: 2306.11106v1 [astro-ph.GA].

  3. L. G. Sigalotti and J. Klapp, ‘‘Protostellar collapse models of prolate molecular cloud cores,’’ Astron. Astrophys. 378, 165–179 (2001). https://doi.org/10.1051/0004-6361:20011181

    Article  Google Scholar 

  4. C. F. McKee and E. C. Ostriker, ‘‘Theory of star formation,’’ Ann. Rev. Astron. Astrophys. 45 (2007). http://www.annualreviews.org

  5. H. Zinnecker and H. W. Yorke, ‘‘Toward understanding massive star formation,’’ Ann. Rev. Astron. Astrophys. 45 (2007).

  6. Y. Fukui, A. Habe, T. Inoue, R. Enokiya, and K. Tachihara, ‘‘Cloud–cloud collisions and triggered star formation,’’ Publ. Astron. Soc. Jpn. 73 (SP1), S1–S34 (2021). https://doi.org/10.1093/pasj/psaa103

    Article  Google Scholar 

  7. A. Habe and K. Ohta, ‘‘Gravitational instability induced by a cloud-cloud collision: The case of head-on collision between clouds with different sizes and densities,’’ Publ. Astron. Soc. Jpn. 44, 203–226 (1992).

    Google Scholar 

  8. C. L. Dobbs, M. R. Krumholz, J. Ballesteros-Paredes, A. Bolatto, Y. Fukui, M. Heyer, M. Mac Low, E. C. Ostriker, and E. Vazquez-Semadeni, ‘‘Formation of molecular clouds and global conditions for star formation,’’ in Protostars and Planets VI, Ed. by H. Beuther, R. Klessen, C. Dullemont, and Th. Henning (Univ. of Arizona Press, AZ, 2013), pp. 3–26.

    Google Scholar 

  9. Special Issue: Star Formation Triggering by Cloud-Cloud Collision, Publ. Astron. Soc. Jpn. 70 (SP2) (2018).

  10. R. B. Loren, ‘‘Colliding clouds and star formation in NGC 1333,’’ Astrophys. J. 209, 466–488 (1976).

    Article  Google Scholar 

  11. J. Ballesteros-Paredes, P. Andre, P. Hennebelle, R. S. Klessen, J. M. Kruijssen, M. Chevance, F. Nakamura, A. Adamo, and E. Vazquez-Semadeni, ‘‘From diffuse gas to dense molecular cloud cores,’’ Space Sci. Rev. 216 (76) (2020). https://doi.org/10.1007/s11214-020-00698-3

  12. R. Bieri, Th. Naab, S. Geen, J. P. Coles, R. Pakmor, and S. Walch, ‘‘The SATIN project. Turbulent multiphase ISM in Milky Way simulations with SNe feedback from stellar clusters,’’ Mon. Not. R. Astron. Soc. 523, 6336–6359 (2023). https://doi.org/10.1093/mnras/stad1710

    Article  Google Scholar 

  13. R. S. Klessen and J. Ballesteros-Paredes, ‘‘Gravoturbulent fragmentation,’’ Baltic Astron. Int. J. 12, (2004).

  14. M. Krause, S. R. Offner, C. Charbonnel, M. Gieles, Ralf S. Klessen, E. Vazquez-Semadeni, J. Ballesteros-Paredes, P. Girichidis, J. M. Diederik Kruijssen, J. L. Ward, and H. Zinnecker, ‘‘The physics of star cluster formation and evolution,’’ Space Sci. Rev. 216 (64) (2020). https://doi.org/10.1007/s11214-020-00689-4

  15. E. Vazquez-Semadeni, J. Ballesteros-Paredes, and R. S. Klessen, ‘‘A holistic scenario of turbulent molecular cloud evolution and control of the star formation efficiency: First tests,’’ Astrophys. J. 585, L131–L134 (2003).

    Article  Google Scholar 

  16. E. P. Johansson and U. Ziegler, ‘‘Radiative interaction of shocks with small interstellar clouds as a pre-stage to star formation,’’ Astrophys. J. 766, 45 (2013). https://doi.org/10.1088/0004-637X/766/1/45/pdf

    Article  Google Scholar 

  17. J. K. Truelove, R. I. Klein, C. F. McKee, J. H. Holliman, L. H. Howell, J. A. Greenough, and D. T. Woods, ‘‘Self-gravitational hydrodynamics with 3-D adaptive mesh refinement: Methodology and applications to molecular cloud collapse and fragmentation,’’ Astrophys. J. 495, 821–835 (1998).

    Article  Google Scholar 

  18. R. Liska and B. Wendroff, ‘‘Comparison of several difference schemes on 1d and 2d test problems for the Euler equations,’’ SIAM J. Sci. Comput. 25, 995–1017 (2003).

    Article  MathSciNet  Google Scholar 

  19. I. Kulikov, I. Chernykh, D. Karavaev, V. Prigarin, A. Sapetina, I. Ulyanichev, and O. Zavyalov, ‘‘A new parallel code based on a simple piecewise parabolic method for numerical modeling of colliding flows in relativistic hydrodynamics,’’ Mathematics 10, 1865 (2022).

    Article  Google Scholar 

  20. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Berlin, 2009).

    Book  Google Scholar 

  21. E. Vazquez-Semadeni et al., ‘‘Magnetic fields in diffuse media,’’ Astrophys. Space Sci. Lib. 407, 401 (2015). https://doi.org/10.3390/math10111865

    Article  Google Scholar 

  22. J. M. Stone and M. L. Norman, ‘‘ZEUS-2D: A radiation MHD code for astrophysical flows in two space dimensions, I. The hydrodynamic algorithms and tests,’’ Astrophys. J. Suppl. Ser. 80, 753–790 (1992).

    Article  Google Scholar 

  23. D. S. Balsara and C. D. Norton, ‘‘Highly parallel structure adaptive mesh refinement using parallel language-based approaches,’’ Parallel Comput., No. 27, 37–70 (2001).

  24. D. Wallin et al., ‘‘Multigrid and Gauss–Seidel smoothers revisited: Parallelization on chip multiprocessors,’’ in Proceedings of the International Conference on Supercomputing (2006).

  25. B. P. Rybakin, V. B. Betelin, V. R. Dushin, E. V. Mikhalchenko, S. G. Moiseenko, L. I. Stamov, and V. V. Tyurenkova, ‘‘Model of turbulent destruction of molecular clouds,’’ Acta Astronaut. 119, 131–136 (2016).

    Article  Google Scholar 

  26. S. Chandrasekhar, Ellipsoidal Figures of Equilibrum (Yale Univ. Press, New Haven, 1969).

    Google Scholar 

  27. B. Rybakin and V. Goryachev, ‘‘The supersonic shock wave interaction with low-density gas bubble,’’ Acta Astronaut. 94, 749–753 (2014).

    Article  Google Scholar 

  28. B. P. Rybakin, V. D. Goryachev, L. I. Stamov, E. V. Mikhalchenko, V. V. Tyurenkova, M. N. Smirnova, A. A. Shamina, E. I. Kolenkina, and D. A. Pestov, ‘‘Modeling the formation of dense clumps during molecular clouds collision,’’ Acta Astronaut. 170, 586–591 (2020).

    Article  Google Scholar 

  29. B. Rybakin and V. Goryachev, ‘‘Modeling of density stratification and filamentous structure formation in molecular clouds after shock wave collision,’’ Comput. Fluids 173, 189–194 (2018).

    Article  MathSciNet  Google Scholar 

  30. B. Rybakin, ‘‘Formation of prestellar regions in collisions of molecular clouds simulations on heterogeneous computers,’’ Acta Astronaut., 926–932 (2023). https://doi.org/10.1016/j.actaastro.2022.10.029

Download references

Funding

Theoretical and numerical simulations were performed using the facilities of Scientific Research Institute for System Analysis RAS and supported by the subsidy (no. FNEF-2022-0021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Rybakin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted by A. B. Muravnik)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybakin, B.P. Protostellar Cores Formation in the Collision of Spherical and Oblate Clouds. Lobachevskii J Math 45, 95–107 (2024). https://doi.org/10.1134/S1995080224010463

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080224010463

Keywords:

Navigation