Skip to main content
Log in

Using Adaptive Mesh Refinement Technique for Numerical Modeling of Relativistic Jets

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Relativistic jets are major sources of radio-frequency radiation in the Universe. Their study is complicated by the fact that the relativistic gas flows interact with interstellar space, with the formation of complex flows that are smaller than the jets but can affect the evolution of the entire jets. Adaptive grids have traditionally been used to simulate such multi-scale phenomena with high spatial resolution in the zone of complex jets and low resolution to reproduce the unperturbed gas flows. In this paper, a Patch-Block-Structured Adaptive-Mesh-Refinement technique is proposed for modeling multi-scale relativistic jets. To use this technique, mathematical tools for numerically solving the equations of special relativistic hydrodynamics are updated in a particular manner. The approach is applied to the evolution of a jet in interstellar space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. S. Komissarov and O. Porth, ‘‘Numerical simulations of jets,’’ New Astron. Rev. 92, 101610 (2021).

  2. D. Siegel and B. Metzger, ‘‘Three-dimensional GRMHD simulations of neutrino-cooled accretion disks from neutron star mergers,’’ Astrophys. J. 858, 52 (2018).

    Article  Google Scholar 

  3. R. Willingale and P. Meszaros, ‘‘Gamma-ray bursts and fast transients. Multi-wavelength observations and multi-messenger signals,’’ Space Sci. Rev. 207, 63–86 (2017).

    Article  Google Scholar 

  4. M. Barkov and M. Lyutikov, ‘‘Kinetic ’jets’ from fast-moving pulsars,’’ Mon. Not. R. Astron. Soc. 485, 2041–2053 (2019).

    Article  Google Scholar 

  5. P. Sotomayor and G. E. Romero, ‘‘Nonthermal radiation from the central region of super-accreting active galactic nuclei,’’ Astron. Astrophys. 664, A178 (2022).

    Article  Google Scholar 

  6. W. Busza, K. Rajagopal, and W. van der Schee, ‘‘Heavy ion collisions: The big picture and the big questions,’’ Ann. Rev. Nucl. Part. Sci. 68, 339–376 (2018).

    Article  Google Scholar 

  7. J. M. Marti and E. Mueller, ‘‘Grid-based methods in relativistic hydrodynamics and magnetohydrodynamics,’’ Living Rev. Comput. Astrophys. 1, 3 (2015).

    Article  Google Scholar 

  8. D. Huber and R. Kissmann, ‘‘Special relativistic hydrodynamics with CRONOS,’’ Astron. Astrophys. 653, A164 (2021).

    Article  Google Scholar 

  9. A. Mignone, T. Plewa, and G. Bodo, ‘‘The piecewise parabolic method for multidimensional relativistic fluid dynamics,’’ Astrophys. J. Suppl. Ser. 160, 199–219 (2005).

    Article  Google Scholar 

  10. A. Lamberts, S. Fromang, G. Dubus, and R. Teyssier, ‘‘Simulating gamma-ray binaries with a relativistic extension of RAMSES,’’ Astron. Astrophys. 560, A79 (2013).

    Article  Google Scholar 

  11. C. White, J. Stone, and C. Gammie, ‘‘An extension of the ATHENA++ code framework for GRMHD based on advanced Riemann solvers and staggered-mesh constrained transport,’’ Astrophys. J. Suppl. Ser. 225, 22 (2016).

    Article  Google Scholar 

  12. C. Muhlberger, F. H. Nouri, M. Duez, F. Foucart, L. Kidder, C. Ott, M. Scheel, B. Szilagyi, and S. Teukolsky, ‘‘Magnetic effects on the low-T/|W| instability in differentially rotating neutron stars,’’ Phys. Rev. D 90, 104014 (2014).

  13. Z. Meliani, R. Keppens, F. Casse, and D. Giannios, ‘‘AMRVAC and relativistic hydrodynamic simulations for gamma-ray burst afterglow phases,’’ Mon. Not. R. Astron. Soc. 376, 1189–1200 (2007).

    Article  Google Scholar 

  14. I. Kulikov, ‘‘A new code for the numerical simulation of relativistic flows on supercomputers by means of a low-dissipation scheme,’’ Comput. Phys. Commun. 257, 107532 (2020).

  15. M. Berger and P. Colella, ‘‘Local adaptive mesh refinement for shock hydrodynamics,’’ J. Comput. Phys. 82, 64–84 (1989).

    Article  Google Scholar 

  16. P. MacNeice, K. Olson, C. Mobarry, R. de Fainchtein, and C. Packer, ‘‘PARAMESH: A parallel adaptive mesh refinement community toolkit,’’ Comput. Phys. Commun. 126, 330–354 (2000).

    Article  Google Scholar 

  17. B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo, ‘‘FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes,’’ Astrophys. J. Suppl. Ser. 131, 273–334 (2000).

    Article  Google Scholar 

  18. M. Adams, P. Colella, D. T. Graves, J. N. Johnson, N. D. Keen, T. J. Ligocki, D. F. Martin, P. W. McCorquodale, D. Modiano, P. O. Schwartz, T. D. Sternberg, and B. Van Straalen, ‘‘Chombo software package for AMR applications – design document,’’ Technical Report LBNL-6616E (Lawrence Berkeley Natl. Labor., 2022).

  19. A. Mignone, C. Zanni, P. Tzeferacos, B. van Straalen, P. Colella, and G. Bodo, ‘‘The PLUTO code for adaptive mesh computations in astrophysical fluid dynamics,’’ Astrophys. J. Suppl. Ser. 198, 7 (2012).

    Article  Google Scholar 

  20. G. Bryan, M. Norman, B. O’Shea, T. Abel, J. Wise, et al., ‘‘ENZO: An adaptive mesh refinement code for astrophysics,’’ Astrophys. J. Suppl. Ser. 211, 19 (2014).

    Article  Google Scholar 

  21. A. Cunningham, A. Frank, P. Varniere, S. Mitran, and T. Jones, ‘‘Simulating magnetohydrodynamical flow with constrained transport and adaptive mesh refinement: Algorithms and tests of the AstroBEAR code,’’ Astrophys. J. Suppl. Ser. 182, 519–542 (2009).

    Article  Google Scholar 

  22. U. Ziegler, ‘‘Self-gravitational adaptive mesh magnetohydrodynamics with the NIRVANA code,’’ Astron. Astrophys. 435, 385–395 (2005).

    Article  Google Scholar 

  23. U. Ziegler, ‘‘The NIRVANA code: Parallel computational MHD with adaptive mesh refinement,’’ Comput. Phys. Commun. 179, 227–244 (2008).

    Article  MathSciNet  Google Scholar 

  24. R. Keppens, P. Braileanu, Y. Zhou, W. Ruan, C. Xia, Y. Guo, N. Claes, and F. Bacchin, ‘‘MPI-AMRVAC 3.0: Updates to an open-source simulation framework,’’ Astron. Astrophys. 673, A66 (2023).

    Article  Google Scholar 

  25. H.-Y. Schive, Y.-C. Tsai, and T. Chiueh, ‘‘GAMER: A graphic processing unit accelerated adaptive-mesh-refinement code for astrophysics,’’ Astrophys. J. Suppl. Ser. 186, 457–484 (2010).

    Article  Google Scholar 

  26. W. Zhang and A. MacFadyen, ‘‘RAM: A relativistic adaptive mesh refinement hydrodynamics code,’’ Astrophys. J. Suppl. Ser. 164, 255–279 (2006).

    Article  Google Scholar 

  27. I. Kulikov, I. Chernykh, and A. Tutukov, ‘‘A new hydrodynamic code with explicit vectorization instructions optimizations that is dedicated to the numerical simulation of astrophysical gas flow. I. Numerical method, tests, and model problems,’’ Astrophys. J. Suppl. Ser. 243, 4 (2019).

    Article  Google Scholar 

  28. J. Stone, K. Tomida, C. White, and K. Felker, ‘‘The Athena++ adaptive mesh refinement framework: Design and magnetohydrodynamic solvers,’’ Astrophys. J. Suppl. Ser. 249, 4 (2020).

    Article  Google Scholar 

  29. L. Sokolinsky, ‘‘BSF: A parallel computation model for scalability estimation of iterative numerical algorithms on cluster computing systems,’’ J. Parallel Distrib. Comput. 149, 193–206 (2021).

    Article  Google Scholar 

  30. I. Kulikov, I. Chernykh, D. Karavaev, V. Prigarin, A. Sapetina, I. Ulyanichev, and O. Zavyalov, ‘‘A new parallel code based on a simple piecewise parabolic method for numerical modeling of colliding flows in relativistic hydrodynamics,’’ Mathematics 10, 1865 (2022).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 23-11-00014). https://rscf.ru/project/23-11-00014/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Kulikov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted by A. B. Muravnik)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, I.M. Using Adaptive Mesh Refinement Technique for Numerical Modeling of Relativistic Jets. Lobachevskii J Math 45, 60–66 (2024). https://doi.org/10.1134/S1995080224010293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080224010293

Keywords:

Navigation