Skip to main content
Log in

Magnetorotational Supernova Explosions: Jets and Mirror Symmetry Violation

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Magnetorotational processes can significantly affect the dynamics of core-collapse supernovae, resulting to magnetically driven jet-like explosions. The magnetic field topology of progenitor stellar cores is believed to be quite complex and is not known precisely. Such complex structures may differ substantially from usual dipole or quadrupole field, which may cause to additional anisotropy of magnetorotational explosions. The latter is a result of mirror symmetry violation of the progenitor magnetic field. Here we report the results of two- dimensional MHD modelling of the collapse and further magnetorotational explosion of a rotating magnetized stellar core. We consider the models with different magnetic field configurations with and without mirror symmetry in the progenitor magnetic field respectively to the equatorial plane. In this work, we study the explosion asymmetry as well as the possibility of a protoneutron star kick formation during the explosion phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. H. A. Bethe, ‘‘Supernova mechanisms,’’ Rev. Mod. Phys. 62, 801–866 (1990). https://doi.org/10.1103/RevModPhys.62.801

    Article  Google Scholar 

  2. H.-Th. Janka, ‘‘Explosion mechanisms of core-collapse supernovae,’’ Ann. Rev. Nucl. Part. Sci. 62, 407–451 (2012). https://doi.org/10.1146/annurev-nucl-102711-094901

    Article  Google Scholar 

  3. S. A. Colgate and R. H. White, ‘‘The hydrodynamic behavior of supernovae explosions,’’ Astrophys. J. 143, 626–681 (1966). https://doi.org/10.1086/148549

    Article  Google Scholar 

  4. H. A. Bethe and J. R. Wilson, ‘‘Revival of a stalled supernova shock by neutrino heating,’’ Astrophys. J. 295, 14–23 (1985). https://doi.org/10.1086/163343

    Article  Google Scholar 

  5. J. M. Blondin, A. Mezzacappa, and C. DeMarino, ‘‘Stability of standing accretion shocks, with an eye toward core-collapse supernovae,’’ Astrophys. J. 584, 971–980 (2003). https://doi.org/10.1086/345812

    Article  Google Scholar 

  6. M. A. Skinner, J. C. Dolence, A. Burrows, D. Radice, and D. Vartanyan, ‘‘Fornax: A flexible code for multiphysics astrophysical simulations,’’ Astrophys. J.: Suppl. Ser. 241 (7), 1–27 (2019). https://doi.org/10.3847/1538-4365/ab007f

    Article  Google Scholar 

  7. B. Mueller, ‘‘The dynamics of neutrino-driven supernova explosions after shock revival in 2D and 3D,’’ Mon. Not. R. Astron. Soc. 453, 287–310 (2015). https://doi.org/10.1093/mnras/stv1611

    Article  Google Scholar 

  8. J. Powell and B. Mueller, ‘‘Three-dimensional core-collapse supernova simulations of massive and rotating progenitors,’’ Mon. Not. R. Astron. Soc. 494, 4665–4675 (2020). https://doi.org/10.1093/mnras/staa1048

    Article  Google Scholar 

  9. G. S. Bisnovatyi-Kogan, ‘‘The explosion of a rotating star as a supernova mechanism,’’ Sov. Astron. 14, 652–655 (1971).

    Google Scholar 

  10. G. S. Bisnovatyi-Kogan, I. P. Popov, and A. A. Samokhin, ‘‘The magnetohydrodynamic rotational model of supernova explosion,’’ Astrophys. Space Sci. 41, 287–320 (1976). https://doi.org/10.1007/BF00646184

    Article  Google Scholar 

  11. E. Mueller and W. Hillebrandt, ‘‘A magnetohydrodynamical supernova model,’’ Astron. Astrophys. 80, 147–154 (1979).

    Google Scholar 

  12. T. Takiwaki, K. Kotake, Sh. Nagataki, and K. Sato, ‘‘Magneto-driven shock waves in core-collapse supernovae,’’ Astrophys. J. 616, 1086–1094 (2004). https://doi.org/10.1086/424993

    Article  Google Scholar 

  13. N. V. Ardeljan, G. S. Bisnovatyi-Kogan, and S. G. Moiseenko, ‘‘Magnetorotational supernovae,’’ Mon. Not. R. Astron. Soc. 359, 333–344 (2005). https://doi.org/10.1111/j.1365-2966.2005.08888.x

    Article  Google Scholar 

  14. A. Burrows, L. Dessart, E. Livne, C. D. Ott, and J. Murphy, ‘‘Simulations of magnetically driven supernova and hypernova explosions in the context of rapid rotation,’’ Astrophys. J. 664, 416–434 (2007). https://doi.org/10.1086/519161

    Article  Google Scholar 

  15. T. Takiwaki and K. Kotake, ‘‘Gravitational wave signatures of magnetohydrodynamically driven core-collapse supernova explosions,’’ Astrophys. J. 743, 30-1–13 (2011). https://doi.org/10.1088/0004-637X/743/1/30

  16. P. Moesta et al., ‘‘Magnetorotational core-collapse supernovae in three dimensions,’’ Astrophys. J. Lett. 785, L29 (2014). https://doi.org/10.1088/2041-8205/785/2/L29

    Article  Google Scholar 

  17. J. Powell, B. Mueller, D. R. Aguilera-Dena, and N. Langer, ‘‘Three dimensional magnetorotational core-collapse supernova explosions of a 39 solar mass progenitor star,’’ Mon. Not. R. Astron. Soc. 522, 6070–6086 (2023). https://doi.org/10.1093/mnras/stad1292

    Article  Google Scholar 

  18. M. Bugli, J. Guilet, M. Obergaulinger, P. Cerda-Duran, and M. A. Aloy, ‘‘The impact of non-dipolar magnetic fields in core-collapse supernovae,’’ Mon. Not. R. Astron. Soc. 492, 58–71 (2020). https://doi.org/10.1093/mnras/stz3483

    Article  Google Scholar 

  19. T. Kuroda, A. Arcones, T. Takiwaki, and K. Kotake, ‘‘Magnetorotational explosion of a massive star supported by neutrino heating in general relativistic three-dimensional simulations,’’ Astrophys. J. 896, 102-1–18 (2020). https://doi.org/10.3847/1538-4357/ab9308

  20. M. A. Aloy and M. Obergaulinger, ‘‘Magnetorotational core collapse of possible GRB progenitors – II. Formation of protomagnetars and collapsars,’’ Mon. Not. R. Astron. Soc. 500, 4365–4397 (2021). https://doi.org/10.1093/mnras/staa3273

    Article  Google Scholar 

  21. M. Bugli, J. Guilet, and M. Obergaulinger, ‘‘Three-dimensional core-collapse supernovae with complex magnetic structures – I. Explosion dynamics,’’ Mon. Not. R. Astron. Soc. 507, 443–454 (2021). https://doi.org/10.1093/mnras/stab2161

    Article  Google Scholar 

  22. R. J. Tayler, ‘‘The adiabatic stability of stars containing magnetic fields – I: Toroidal fields,’’ Mon. Not. R. Astron. Soc. 161, 365–380 (1973). https://doi.org/10.1093/mnras/161.4.365

    Article  Google Scholar 

  23. S. Akiyama, J. C. Wheeler, D. L. Meier, and I. Lichtenstadt, ‘‘The magnetorotational instability in core-collapse supernova explosions,’’ Astrophys. J. 584, 954–970 (2003). https://doi.org/10.1086/344135

    Article  Google Scholar 

  24. A. G. Lyne and D. R. Lorimer, ‘‘High birth velocities of radio pulsars,’’ Nature 369, 127–129 (1994). https://doi.org/10.1038/369127a0

    Article  Google Scholar 

  25. D. Lai, ‘‘Neutron star kicks and asymmetric supernovae,’’ in Physics of Neutron Star Interiors, Lecture Notes in Physics, Ed. by D. Blaschke, N. K. Glendenning, and A. Sedrakian (Springer, 2001), pp. 424–439.

    Google Scholar 

  26. L. Scheck, K. Kifonidis, H. T. Janka, and E. Mueller, ‘‘Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions,’’ Astron. Astrophys. 457, 963–986 (2006). https://doi.org/10.1051/0004-6361:20064855

    Article  Google Scholar 

  27. A. Wongwathanarat, H. T. Janka, and E. Mueller, ‘‘Three-dimensional neutrino-driven supernovae: Neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products,’’ Astron. Astrophys. 552, A126 (2013). https://doi.org/10.1051/0004-6361/201220636

    Article  Google Scholar 

  28. J. C. L. Wang, M. E. Sulkanen, and R. V. E. Lovelace, ‘‘Intrinsically asymmetric astrophysical jets,’’ Astrophys. J. 390, 46–65 (1992). https://doi.org/10.1086/171258

    Article  Google Scholar 

  29. G. S. Bisnovatyi-Kogan and S. G. Moiseenko, ‘‘Violation of mirror symmetry of the magnetic field in a rotating star and possible astrophysical manifestations,’’ Sov. Astron. 36, 285–289 (1992)).

    Google Scholar 

  30. H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, ‘‘Relativistic equation of state for core-collapse supernova simulations,’’ Astrophys. J.: Suppl. Ser. 197, 20-1–14 (2011). https://doi.org/10.1088/0067-0049/197/2/20

  31. E. O’Connor and C. D. Ott, ‘‘A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes,’’ Class. Quantum Grav. 27, 114103-1–28 (2010). https://doi.org/10.1088/0264-9381/27/11/114103

    Article  MathSciNet  Google Scholar 

  32. S. Rosswog and M. Liebendorfer, ‘‘High-resolution calculations of merging neutron stars – II. Neutrino emission,’’ Mon. Not. R. Astron. Soc. 342, 673–689 (2003). https://doi.org/10.1046/j.1365-8711.2003.06579.x

    Article  Google Scholar 

  33. M. Ruffert, H.-Th. Janka, and G. Schafer, ‘‘Coalescing neutron stars – a step towards physical models. I. Hydrodynamic evolution and gravitational-wave emission,’’ Astron. Astrophys. 311, 532–566 (1996).

    Google Scholar 

  34. H.-Th. Janka, ‘‘Conditions for shock revival by neutrino heating in core-collapse supernovae,’’ Astron. Astrophys. 368, 527–560 (2001). https://doi.org/10.1051/0004-6361:20010012

    Article  Google Scholar 

  35. M. Liebendorfer, ‘‘A parameterization of the consequences of deleptonization for simulations of stellar core collapse,’’ Astrophys. J. 633, 1042–1051 (2005). https://doi.org/10.1086/466517

    Article  Google Scholar 

  36. S. E. Woosley and A. Heger, ‘‘Nucleosynthesis and remnants in massive stars of solar metallicity,’’ Phys. Rep. 442, 269–283 (2007). https://doi.org/10.1016/j.physrep.2007.02.009

    Article  Google Scholar 

  37. S. E. Woosley and A. Heger, ‘‘The progenitor stars of gamma-ray bursts,’’ Astrophys. J. 637, 914–921 (2006). https://doi.org/10.1086/498500

    Article  Google Scholar 

  38. Y. Suwa, T. Takiwaki, K. Kotake, and K. Sato, ‘‘Magnetorotational collapse of population III stars,’’ Publ. Astron. Soc. Jpn. 59, 771–785 (2007). https://doi.org/10.1093/pasj/59.4.771

    Article  Google Scholar 

  39. T. Miyoshi and K. Kusano, ‘‘A multi-state \(HLL\) approximate Riemann solver for ideal magnetohydrodynamics,’’ J. Comput. Phys. 208, 315–344 (2005). https://doi.org/10.1016/j.jcp.2005.02.017

    Article  MathSciNet  Google Scholar 

  40. G. Toth, ‘‘The \(\nabla\cdot\mathbf{B}\) constraint in shock-capturing magnetohydrodynamics codes,’’ J. Comput. Phys. 161, 605–652 (2000). https://doi.org/10.1006/jcph.2000.6519

    Article  MathSciNet  Google Scholar 

  41. A. Dedner et al., ‘‘Hyperbolic divergence cleaning for the MHD equations,’’ J. Comput. Phys. 175, 645–673 (2002). https://doi.org/10.1006/jcph.2001.6961

    Article  MathSciNet  Google Scholar 

  42. M. Zhang and X. Feng, ‘‘A comparative study of divergence cleaning methods of magnetic field in the solar coronal numerical simulation,’’ Front. Astron. Space Sci. 3, 1–14 (2016). https://doi.org/10.3389/fspas.2016.00006

    Article  Google Scholar 

  43. K. G. Powell, ‘‘An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension),’’ ICASE Report No. 94-24 (ICASE, Langley, VA, 1994).

  44. A. Mignone, ‘‘High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinates,’’ J. Comput. Phys. 270, 784–814 (2014). https://doi.org/10.1016/j.jcp.2014.04.001

    Article  MathSciNet  Google Scholar 

  45. Yo. Matsumoto et al., ‘‘Magnetohydrodynamic simulation code CANS+: Assessments and applications,’’ Publ. Astron. Soc. Jpn. 71, 83-1–26 (2019). https://doi.org/10.1093/pasj/psz064

  46. J. M. Stone and T. Gardiner, ‘‘A simple unsplit Godunov method for multidimensional MHD,’’ New Astron. 14, 139–148 (2009). https://doi.org/10.1016/j.newast.2008.06.003

    Article  Google Scholar 

  47. M. Steinmetz and E. Mueller, ‘‘Simulating self-gravitating hydrodynamic flows,’’ Comput. Phys. Commun. 89, 45–58 (1995). https://doi.org/10.1016/0010-4655(94)00185-5

    Article  Google Scholar 

  48. A. Marek, H. Dimmelmeier, H.-Th. Janka, E. Mueller, and R. Buras, ‘‘Exploring the relativistic regime with Newtonian hydrodynamics: An improved effective gravitational potential for supernova simulations,’’ Astron. Astrophys. 445, 273–289 (2006). https://doi.org/10.1051/0004-6361:20052840

    Article  Google Scholar 

Download references

Funding

I. A. K. is grateful to ‘‘BASIS’’ foundation (grant ‘‘PhD Student’’ no. 22-1-5-107-1) for support of his work on the development of the neutrino leakage scheme in this paper. The work of S. G. M. and G. S. B.-K. on the other content in this paper was supported by RSF grant no. 23-12-00198.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Kondratyev, S. G. Moiseenko or G. S. Bisnovatyi-Kogan.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted by A. B. Muravnik)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyev, I.A., Moiseenko, S.G. & Bisnovatyi-Kogan, G.S. Magnetorotational Supernova Explosions: Jets and Mirror Symmetry Violation. Lobachevskii J Math 45, 50–59 (2024). https://doi.org/10.1134/S1995080224010268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080224010268

Keywords:

Navigation