Skip to main content
Log in

Physically Informed Deep Learning Technique for Estimating Blood Flow Parameters in Arterial Bifurcations

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

This research investigates application of physically regularized deep learning for the estimation of blood flow parameters in bifurcations of human arteries. The study presents a comprehensive methodology that combines synthetic data generation and advanced neural network architectures. The initial step involves construction of 3D meshes for bifurcations achieved through the developed mesh generator based on the GMSH library. A diverse dataset is then generated on the basis of 3D blood flow simulations in bifurcations in a physiological range of parameters such as vessel radii, bifurcation angles and inlet and outlet pressures. The generic database for neural network training and testing contains approximately \(1.4\cdot 10^{5}\) data samples. The research focuses on training a feed-forward neural network, which provides the minimum possible error and physically relevant output. Two types of loss functions are explored for assessing the network’s performance, Huber loss function (HLF) and a physically regularized loss function (PRLF). We achieve the relative error of \(12\%\) for HLF. The study demonstrates that PRLF enhances the model’s capability to adhere to physical laws which provides faster convergence of training phase and decrease of the relative error to approximately \(2.5\%\) on the test dataset. We also study sensitivity of PRLF-based neural network convergence to different physical components. We found that adding symmetry property to the mass conservation condition accelerates the training process, decreases fluctuations of PRLF and reduces the relative error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. T. Dobroserdova, M. Olshanskii, and S. Simakov, ‘‘Multiscale coupling of compliant and rigid walls blood flow models,’’ Int. J. Numer. Methods Fluids 82, 799–817 (2016). https://doi.org/10.1002/fld.4241

    Article  MathSciNet  Google Scholar 

  2. T. Dobroserdova, F. Liang, G. Panasenko, and Yu. Vassilevski, ‘‘Multiscale models of blood flow in the compliant aortic bifurcation,’’ Appl. Math. Lett. 93, 98–104 (2019). https://doi.org/10.1016/j.aml.2019.01.037

    Article  MathSciNet  Google Scholar 

  3. Yu. Vassilevski, M. Olshanskii, S. Simakov, A. Kolobov, and A. Danilov, Personalized Computational Hemodynamics. Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy (Academic, New York, 2020).

    Google Scholar 

  4. A. Quarteroni and L. Formaggia, Mathematical Modelling and Numerical Simulation of the Cardiovascular System (Elsevier, Amsterdam, 2004). https://doi.org/10.1016/S1570-8659(03)12001-7

    Book  Google Scholar 

  5. T. Dobroserdova, Yu. Vassilevski, S. Simakov, T. Gamilov, A. Svobodov, and L. Yurpolskaya, ‘‘Two-scale haemodynamic modelling for patients with Fontan circulation,’’ Russ. J. Numer. Anal. Math. Model. 36, 267–278 (2021). https://doi.org/10.1515/rnam-2021-0022

    Article  MathSciNet  Google Scholar 

  6. J. Kutz, ‘‘Deep learning in fluid dynamics,’’ J. Fluid Mech. 814, 1–4 (2017). https://doi.org/10.1017/jfm.2016.803

    Article  Google Scholar 

  7. M. Du, C. Zhang, S. Xie, F. Pu, D. Zhang, and D. Li, ‘‘Investigation on aortic hemodynamics based on physics-informed neural network,’’ Math. Biosci. Eng. 20, 11545–11567 (2023). https://doi.org/10.3934/mbe.2023512

    Article  MathSciNet  Google Scholar 

  8. M. Sarabian, H. Babaee, and K. Laksari, ‘‘Physics-informed neural networks for brain Hemodynamic predictions using medical imaging,’’ IEEE Trans. Med. Imaging 41, 2285–2303 (2022). https://doi.org/10.1109/TMI.2022.3161653

    Article  Google Scholar 

  9. C. Geuzaine and J.-F. Remacle, ‘‘Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities,’’ Int. J. Numer. Methods Eng. 79, 1309–1331 (2009). https://doi.org/10.1002/nme.2579

    Article  MathSciNet  Google Scholar 

  10. D. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ arXiv: 1412.6980 (2014). https://api.semanticscholar.org/CorpusID:6628106

  11. Yu. Vassilevski and K. Lipnikov, ‘‘An adaptive algorithm for quasioptimal mesh generation,’’ Comput. Math. Math. Phys. 39, 1468–1486 (1999). https://www.mathnet.ru/eng/zvmmf/v39/i9/p1532

    MathSciNet  Google Scholar 

  12. P. R. Amestoy, I. S. Duff, J.-E. L’Excellent, and J. Koster, ‘‘A fully asynchronous multifrontal solver using distributed dynamic scheduling,’’ SIAM J. Matrix Anal. Appl. 23, 15–41 (2001). https://doi.org/10.1137/S0895479899358194

    Article  MathSciNet  Google Scholar 

  13. G. Bebis and M. Georgiopoulos, ‘‘Feed-forward neural networks,’’ IEEE Potentials 13 (4), 27–31 (1994). https://doi.org/10.1109/45.329294

    Article  Google Scholar 

  14. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks from overfitting,’’ J. Mach. Learn. Res. 15, 1929–1958 (2014). https://api.semanticscholar.org/CorpusID:6844431

    MathSciNet  Google Scholar 

  15. N. Sridhar, ‘‘The generalized sigmoid activation function: Competitive supervised learning,’’ Inform. Sci. 99, 69–82 (1997). https://doi.org/10.1016/S0020-0255(96)00200-9

    Article  MathSciNet  Google Scholar 

  16. V. Nair and G. Hinton, ‘‘Rectified linear units improve restricted boltzmann machines,’’ in Proceedings of the 27th International Conference on Machine Learning ICML-10, June 21–24, 2010, Haifa, Israel (2010). https://api.semanticscholar.org/CorpusID:15539264

  17. A. Pretorius, E. Barnard, and M. Davel, ‘‘ReLU and sigmoidal activation functions,’’ in Fundamentals of Artificial Intelligence Research (Springer, 2019). https://api.semanticscholar.org/CorpusID:211073632

    Google Scholar 

  18. C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, ‘‘Activation functions: Comparison of trends in practice and research for deep learning,’’ in Proceedings of the 2nd International Conference on Computational Sciences and Technologies, arXiv: 1811.03378 (2018). https://api.semanticscholar.org/CorpusID:53208763

  19. A. Krizhevsky, I. Sutskever, and G. Hinton, ‘‘ImageNet classification with deep convolutional neural networks,’’ Commun. ACM 60, 84–90 (2012). https://api.semanticscholar.org/CorpusID:195908774

    Article  Google Scholar 

  20. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, Boston, 2016).

    Google Scholar 

  21. P. Huber, ‘‘Robust estimation of a location parameter,’’ Ann. Math. Stat. 35, 492–518 (1964). https://api.semanticscholar.org/CorpusID:121252793

    Article  MathSciNet  Google Scholar 

  22. M. N. Amin and H. Meidani, ‘‘Physics-informed regularization of deep neural networks,’’ J. Comput. Inf. Sci. Eng. 20 (2018). https://api.semanticscholar.org/CorpusID:203047559

  23. R. Rojas, ‘‘The backpropagation algorithm,’’ in Neural Networks: A Systematic Introduction (Springer, Heidelberg, 1996), pp. 149–182. https://doi.org/10.1007/978-3-642-61068-4_7

    Book  Google Scholar 

  24. M. Claesen and B. De Moor, ‘‘Hyperparameter search in machine learning,’’ arXiv: 1502.02127 (2015). https://api.semanticscholar.org/CorpusID:17147092

  25. L. O. Müller, S. M. Watanabe, E. F. Toro, R. A. Feijóo, and P. J. Blanco, ‘‘An anatomically detailed arterial-venous network model. Cerebral and coronary circulation,’’ Front. Physiol. 14, 1162391 (2023). https://doi.org/10.3389/fphys.2023.1162391

  26. S. S. Simakov, T. M. Gamilov, F. Liang, D. G. Gognieva, D. G. M. K. Gappoeva, and P. Y. Kopylov, ‘‘Numerical evaluation of the effectiveness of coronary revascularization,’’ Russ. J. Numer. Anal. Math. Model. 36, 303–312 (2021). https://doi.org/10.1515/rnam-2021-0025

    Article  MathSciNet  Google Scholar 

  27. D. Gognieva, Yu. Mitina, T. Gamilov, R. Pryamonosov, Yu. Vasilevsky, S. Simakov, F. Liang, S. Ternovoy, N. Serova, E. Tebenkova, V. Sinitsyn, E. Pershina, S. Abugov, G. Mardanian, N. Zakarian, V. Kirakosuan, V. Betelin, D. Schekochikhin, A. Syrkin, and F. Kopylov, ‘‘Noninvasive assessment of the fractional flow reserve with the CT FFRc 1D method: Final results of a pilot study,’’ Gobal Heart 16 (1), 1 (2021). https://doi.org/10.5334/gh.837

    Article  Google Scholar 

  28. D. G. Gognieva, E. S. Pershina, Yu. O. Mitina, T. M. Gamilov, R. A. Pryamonosov, N. A. Gogiberidze, A. N. Rozhkov, Yu. V. Vasilevsky, S. S. Simakov, F. Liang, V. E. Sinitsyn, V. B. Betelin, D. Yu. Schekochikhin, A. L. Syrkin, and F. Yu. Kopylov, ‘‘Non-invasive fractional flow reserve: A comparison of one-dimensional and three-dimensional mathematical modeling effectiveness,’’ Cardiovasc. Ther. Prevent. 19, 2303 (2020). https://doi.org/10.15829/1728-8800-2020-2303

    Article  Google Scholar 

Download references

Funding

This work has been supported by the Russian Science Foundation, grant number 21-71-30023.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Dobroserdova, A. Danilov or S. Simakov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted by Yu. V. Vassilevski)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, A., Dobroserdova, T., Danilov, A. et al. Physically Informed Deep Learning Technique for Estimating Blood Flow Parameters in Arterial Bifurcations. Lobachevskii J Math 45, 239–250 (2024). https://doi.org/10.1134/S1995080224010219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080224010219

Keywords:

Navigation