Skip to main content
Log in

Numerical Modeling of Fracturing in Fiber Reinforced Polymers with Grid-characteristic Method

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Numerical modeling of aircraft composites dynamic failure is a relevant and wide subject. This research concentrates on the barely visible impact damage that is caused by a low-velocity impact with a steel striker. The one-side crack model is verified on experimental data for short energy pulse on glass. An impact of steel striker and unidirectional composite rib was modeled, several sizes of striker and values of impact energy from \(5{\text{ J}}\) to \(50{\text{ J}}\) are considered. Several failure criteria were considered: Tsai–Hill, Tsai–Wu, Drucker–Prager, Hashin, Puck, LaRC03, LaRC04. Analysis of crack directions for the largest principal stress criterion and the Puck criterion was conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

REFERENCES

  1. S. Abrate, ‘‘Introduction to the mechanics of composite materials,’’ in Impact Engineering of Composite Structures, Ed. by S. Abrate, Vol. 526 of CISM International Centre for Mechanical Sciences (Springer, Vienna, 2011), pp. 1–48.

  2. S. Abrate, ‘‘Impact on laminated composite materials,’’ Appl. Mech. Rev. 44, 155–190 (1991).

    Article  Google Scholar 

  3. M. Sadighi, R. C. Alderliesten, and R. Benedictus, ‘‘Impact resistance of fiber-metal laminates: A review,’’ Int. J. Impact Eng. 49, 77–90 (2012).

    Article  Google Scholar 

  4. M. Garnich and V. Akula, ‘‘Review of degradation models for progressive failure analysis of fiber reinforced polymer composites,’’ Appl. Mech. Rev. 62 (1) (2009).

  5. V. Lopresto and G. Caprino, ‘‘Damage mechanisms and energy absorption in composite laminates under low velocity impact loads,’’ in Dynamic Failure of Composite and Sandwich Structures, Ed. by S. Abrate, B. Castanie, and Y. Rajapakse, Vol. 192 of Solid Mechanics and Its Applications (Springer, Dordrecht, 2013), pp. 209–289.

  6. M. O. Richardson and M. Wisheart, ‘‘Review of low-velocity impact properties of composite materials,’’ Composites, Part A 27, 1123–1131 (1996).

    Article  Google Scholar 

  7. M. J. Hinton, A. S. Kaddour, and P. D. Soden, Failure Criteria in Fibre Reinforced Polymer Composites: The World-Wide Failure Exercise (Elsevier, Amsterdam, 2004).

    Google Scholar 

  8. M. J. Hinton and A. S. Kaddour, ‘‘Maturity of 3D failure criteria for fibre-reinforced composites: Comparison between theories and experiments: Part B of WWFE-II,’’ J. Compos. Mater. 7, 925–966 (2013).

    Google Scholar 

  9. K. A. Beklemysheva and I. B. Petrov, ‘‘Damage modeling in hybrid composites subject to low-speed impact,’’ Math. Models Comput. Simul. 11, 469–478 (2019).

    Article  Google Scholar 

  10. G. Perillo, N. P. Vedivik, and A. T. Echtermeyer, ‘‘Damage development in stitch bonded GFRP composite plates under low-velocity impact: Experimental and numerical results,’’ J. Compos. Mater. 49, 601–615 (2014).

    Article  Google Scholar 

  11. R. C. Batra, G. Gopinath, and J. Q. Zheng, ‘‘Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates,’’ Compos. Struct. 94, 540–547 (2012).

    Article  Google Scholar 

  12. A. Puck and H. Schurmann, ‘‘Failure analysis of FRP laminates by means of physically based phenomenological models,’’ Compos. Sci. Technol. 62, 1633–1662 (2002).

    Article  Google Scholar 

  13. N. Hu, Y. Zemba, T. Okabe, C. Yan, H. Fukunaga, and A. Elmarakbi, ‘‘A new cohesive model for simulating delamination propagation in composite laminates under transverse loads,’’ Mech. Mater. 40, 920–935 (2008).

    Article  Google Scholar 

  14. K. M. Magomedov and A. S. Kholodov, Grid-Characteristic Numerical Methods (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  15. K. A. Beklemysheva, A. S. Ermakov, I. B. Petrov, and A. V Vasyukov, ‘‘Numerical simulation of the failure of composite materials by using the grid-characteristic method,’’ Math. Models Comput. Simul. 5, 557–567 (2016).

    Article  Google Scholar 

  16. K. A. Beklemysheva, V. I. Golubev, I. B. Petrov, and A. V. Vasyukov, ‘‘Determining effects of impact loading on residual strength of fiber-metal laminates with grid-characteristic numerical method,’’ Chin. J. Aeronaut. 34, 1–12 (2021).

    Article  Google Scholar 

  17. G. Maenchen and S. Sack, ‘‘The TENSOR code,’’ Methods Comput. Phys. 3, 181–210 (1964).

    Google Scholar 

  18. V. A. Gasilov, A. S. Grushin, A. S. Ermakov, O. G. Olkhovskaya, and I. B. Petrov, ‘‘Simulation of the destruction of polymer materials under the action of intense energy flows,’’ Math. Models Comput. Simul. 11, 198–208 (2019).

    Article  MathSciNet  Google Scholar 

  19. R. M. Christensen, Theory of Viscoelasticity (Academic, London, 1971).

    Google Scholar 

  20. K. A. Beklemysheva and I. B. Petrov, ‘‘Numerical modeling of high-intensity focused ultrasound with grid-characteristic method,’’ Lobachevskii J. Math. 41, 2638–2647 (2020).

    Article  MathSciNet  Google Scholar 

  21. K. A. Beklemysheva, A. V. Vasyukov, A. O. Kazakov, and I. B. Petrov, ‘‘Grid-characteristic numerical method for low-velocity impact testing of fiber-metal laminates,’’ Lobachevskii J. Math. 39, 874–883 (2018).

    Article  MathSciNet  Google Scholar 

  22. L. I. Sedov, Mechanics of Continuous Media (World Scientific, Singapore, 1997; Nauka, Moscow, 1973).

  23. A. Puck and W. Schneider, ‘‘On failure mechanisms and failure criteria of filament-wound glass-fibre/resin composites,’’ Plast. Polym. 37, 33–44 (1969).

    Google Scholar 

  24. B. A. Demidov, V. P. Efremov, Yu. G. Kalinin, E. D. Kazakov, S. Yu. Metelkin, V. A. Petrov, and A. I. Potapenko, ‘‘New method of the polymeric material properties experimental investigation under powerful energy flux impact,’’ J. Phys.: Conf. Ser. 653 (1) (2015).

  25. V. G. Novikov, A. D. Solomyannaya, I. Yu. Vichev, and A. S. Grushin, ‘‘THERMOS: Library of functions for calculating the radiation and thermodynamic properties of various substances and mixtures in a wide range of temperatures and densities,’’ Certificate of State Registration of Computer Programs, No. 2013616315 (2013).

Download references

Funding

This research was supported by Russian Science Foundation, project no. 23-11-00035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Beklemysheva.

Ethics declarations

The author of this work declares that she has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted by A. V. Lapin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beklemysheva, K.A. Numerical Modeling of Fracturing in Fiber Reinforced Polymers with Grid-characteristic Method. Lobachevskii J Math 45, 155–165 (2024). https://doi.org/10.1134/S1995080224010062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080224010062

Keywords:

Navigation