Skip to main content
Log in

Qualitative Investigation of Some Hierarchical Family of Cubic Dynamic Systems

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The article represents methods and results of the original investigation of some hierarchical family of cubic dynamic differential systems in the Poincaré disk. For a family of systems, whose right-hand sides are reciprocal polynomial forms of the phase variables (a cubic form in the first equation and a square form in another one) all possible topologically different phase portraits in the Poincaré disk were investigated and constructed using approaches of the qualitative theory of ODEs and dynamic systems. Close to coefficient criteria of all phase portraits appearance for each of the existing subfamilies of systems under consideration were obtained. Research methods invented especially for the goals of this study are described in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. F. Andreev, Singular Points of Differential Equations (Vysheish. Shkola, Minsk, 1979) [in Russian].

    Google Scholar 

  2. A. F. Andreev, An Introduction into the Local Qualitative Theory of Differential Equations (SPb. Gos. Univ., St. Petersburg, 2003) [in Russian].

  3. V. Zakharov, ‘‘General mathematical model for energetic and informatic evaluated over natively producing surrounded systems,’’ J. Phys.: Conf. Ser. 1730, 012054 (2021).

  4. V. Zakharov, ‘‘Optimization mathematical model of the peaceful subordinating interaction of two States,’’ J. Phys.: Conf. Ser. 1391, 012040 (2021).

  5. V. K. Zakharov, ‘‘Dynamic optimization mathematical model of the military subordinating interaction of two states,’’ Vibroeng. Proc. 25, 143–150 (2019).

    Article  Google Scholar 

  6. T. E. Zvyagintceva and V. A. Pliss, ‘‘Conditions for the existence of two limit cycles in a system with hysteresis nonlinearity,’’ Vestn. SPb. Univ., Math. 51, 237–243 (2018).

    Google Scholar 

  7. A. F. Andreev and I. A. Andreeva, ‘‘Phase flows of one family of cubic systems in the Poincaré circle. IV (2),’’ Differ. Uravn. Prots. Upravl., No. 4, 6–17 (2010).

  8. A. A. Andronov, E. V. Leontovich, I. I. Gordon, and A. G. Mayer, The Qualitative Theory of Second Order Dynamic Systems (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  9. V. V. Nemytzkyi and V. V. Stepanov, The Qualitative Theory of Differential Equations (Lenand, Moscow, 2017) [in Russian].

    Google Scholar 

  10. A. F. Andreev and I. A. Andreeva, ‘‘Phase portraits of one family of cubic systems in the Poincaré circle. I,’’ Vestn. RAEN 4 (17), 8–18 (2017).

    Google Scholar 

  11. S. Yu. Pilyugin, Spaces of Dynamical Systems (Walter de Gruyter, Berlin, 2012).

    Book  Google Scholar 

  12. G. Osipenko, ‘‘Computer-oriented tests for hyperbolicity and structural stability of dynamical system,’’ Differ. Equat. Control Process. (2023). https://doi.org/10.21638/11701/spbu35.2023.302

    Book  Google Scholar 

  13. A. Andreev and I. Andreeva, ‘‘Investigation of a family of cubic dynamic systems,’’ Vibroeng. Proc. 15, 88–93 (2017).

    Article  Google Scholar 

  14. A. F. Andreev and I. A. Andreeva, ‘‘On a behavior of trajectories of a certain family of cubic dynamic systems in a Poincaré circle,’’ J. Phys.: Conf. Ser. 1141, 012114 (2018).

  15. I. A. Andreeva, ‘‘Investigation of a family of dynamic systems with reciprocal polynomial right parts in a Poincaré circle,’’ J. Phys.: Conf. Ser. 1391, 012039 (2019). https://doi.org/10.1088/1742-6596/1391/1/012039

  16. I. A. Andreeva and T. O. Efimova, ‘‘Investigation of phase portraits belonging to polynomial dynamic systems in a Poincaré disk,’’ J. Phys.: Conf. Ser. 1425, 012140 (2020).

  17. I. A. Andreeva, ‘‘Several classes of plain dynamic systems qualitative investigation,’’ J. Phys.: Conf. Ser. 1730, 012053 (2021).

  18. I. A. Andreeva, ‘‘Classes of dynamic systems with various combinations of multipliers in their reciprocal polynomial right parts,’’ J. Phys.: Conf. Ser. 2090, 012095 (2021).

  19. I. A. Andreeva and T. O. Efimova, ‘‘On the qualitative study of phase portraits for some categories of polynomial dynamic systems,’’ Stud. Syst., Decision Control 418, 39–50 (2022).

    Google Scholar 

  20. A. F. Andreev, I. A. Andreeva, L. V. Detchenya, T. V. Makovetskaya, and A. P. Sadovskii, ‘‘Nilpotent centers of cubic systems,’’ Differ. Equat. 53, 975–980 (2017).

    Article  MathSciNet  Google Scholar 

  21. O. A. Aksenova and I. A. Khalidov, ‘‘Simulation of unstable rarefied gas flows in a channel for different Knudsen numbers,’’ AIP Conf. Proc. 2132, 180009 (2019). https://doi.org/10.1063/1.5119667

  22. O. A. Aksenova and I. A. Khalidov, ‘‘Inverse problem of finding surface roughness parameters in rarefied gas flow,’’ AIP Conf. Proc. 2132, 170005 (2019). https://doi.org/10.1063/1.5119658

  23. V. Egorov, O. Maksimova, I. Andreeva, H. Koibuchi, S. Hongo, S. Nagahiro, T. Ikai, M. Nakayama, S. Noro, T. Uchimoto, and J. P. Rieu, ‘‘Stochastic fluid dynamics simulations of the velocity distribution in protoplasmic streaming,’’ Phys. Fluids 32, 121902 (2020). https://doi.org/10.1063/5.0019225

  24. A. F. Andreev and Yu. N. Bibikov, ‘‘Studies on the local qualitative theory of differential equations at the Differential Equations department of the St. Petersburg University,’’ Differ. Uravn. Prots. Upravl., No. 1, 59–92 (2003).

  25. S. Yu. Pilyugin, ‘‘Studies on the global qualitative theory of differential equations at the Differential Equations department of the St. Petersburg University,’’ Differ. Uravn. Prots. Upravl., No. 1, 29–58 (2003).

  26. H. Poincaré, ‘‘Sur les courbes définies par les équations différentielles,” J. Math. Pures Appl., Ser. 4 7, 375 (1881);

    Google Scholar 

  27. J. Math. Pures Appl., Ser. 4 8, 251 (1882);

    Google Scholar 

  28. J. Math. Pures Appl., Ser. 4 1, 167–244 (1885);

    Google Scholar 

  29. H. Poincaré, ‘‘Sur les courbes définies par les équations différentielles,’’ J. Math. Pures Appl., Ser. 4 7, 375 (1881); J. Math. Pures Appl., Ser. 4 8, 251 (1882); J. Math. Pures Appl., Ser. 4 1, 167–244 (1885); J. Math. Pures Appl., Ser. 4 2, 151–218 (1886).

    Google Scholar 

  30. H. Poincaré, Les methodes nouvelles de la mecanique celeste (Paris, 1892–1899).

  31. H. Poincaré, Proc. R. Soc. London 91, 5–16 (1915).

    Google Scholar 

  32. A. Krivtsov, ‘‘The Ballistic Heat Equation for a One-Dimensional Harmonic Crystal,’’ Dyn. Process. Gen. Continua Struct. 103, 345–358 (2019).

    MathSciNet  Google Scholar 

  33. K. Fahmi, E. Kolosov, and M. Fattah, ‘‘Behavior of different materials for stone column construction,’’ J. Eng. Appl. Sci. 14, 1162–1168 (2019).

    Article  Google Scholar 

  34. E. Kolosov, K. Agishev, and N. Kolosova, ‘‘Application of inclined injection piles as a means of seismic protection of slope’’ MATEC Web of Conf. 107, 00032 (2017).

  35. N. Kolosova, E. Kolosov, and K. Agishev, ‘‘Systematization modern devices for the protection of buildings and structures due to seismic impacts’’ MATEC Web of Conf. 107, 00065 (2017).

  36. D. Rashid, E. Kolosov, N. Kolosova, and T. Soldatenko, ‘‘Advances and trends in engineering sciences and technologies. II,’’ in Proceedings of the 2nd International Conference on Engineering Sciences and Technologies ESaT (2016).

  37. A. Bolshakov, I. Veshneva, and D. Lushin, ‘‘Mathematical model of integration of cyber-physical systems for solving problems of increasing the competitiveness of the regions of the Russian Federation,’’ Studies Syst. Decis. Control 333, 129–140 (2020).

    Article  Google Scholar 

  38. R. Neydorf, A. Gaiduk, and N. Gamayunov, ‘‘The multiplicative-isolating principle of significantly nonlinear mathematical models creation,’’ Studies Syst., Decis. Control 338, 23–32 (2021).

    Google Scholar 

  39. A. Galkin and A. Sysoev, ‘‘Controlling traffic flows in intelligent transportation system,’’ Studies Syst. Decis. Control 333, 91–102 (2020).

    Article  Google Scholar 

  40. V. Kuzkin and A. Krivtsov, ‘‘Fast and slow thermal processes in harmonic scalar lattices,’’ J. Phys.: Condens. Matter 29 (50), 14 (2017).

    Google Scholar 

  41. V. N. Orlov and M. Gasanov, ‘‘The maximum domain for an analytical approximate solution to a nonlinear differential equation in the neighborhood of a moving singular point,’’ Axioms 12, 844 (2023). https://doi.org/10.3390/axioms12090844

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The article is dedicated to Dr. Alexey Fedorovich Andreev, the Honorable Professor of the St. Petersburg State University (1923–2017), for His greatly valued contribution into this research topic and in connection with His centenary anniversary.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Andreeva.

Ethics declarations

The author of this work declares that she has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, I. Qualitative Investigation of Some Hierarchical Family of Cubic Dynamic Systems. Lobachevskii J Math 45, 364–375 (2024). https://doi.org/10.1134/S1995080224010049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080224010049

Keywords:

Navigation