Skip to main content
Log in

Adaptive Dynamic Grids and Mimetic Finite Difference Method for Miscible Displacement Problem

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider the solution of a two-phase miscible displacement problem on dynamic adaptive meshes using the mimetic finite difference method. The mimetic finite difference method is employed to discretize the Darcy law and the mass fraction advection-dispersion equation. We propose modifications to the mimetic finite difference method: to reproduce two-point flux approximation on \(\mathbb{K}\)-orthogonal grids and address degenerate advection-diffusion problems. We validate the method and demonstrate its applicability to the viscous fingering problem with adaptive mesh refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. A. S. Abd, N. Zhang, and A. S. Abushaikha, ‘‘Modeling the effects of capillary pressure with the presence of full tensor permeability and discrete fracture models using the mimetic finite difference method,’’ Transp. Porous Media 137, 739–761 (2021). https://doi.org/10.1007/s11242-021-01585-3

    Article  MathSciNet  Google Scholar 

  2. S. A. Abdul Hamid and A. H. Muggeridge, ‘‘Analytical solution of polymer slug injection with viscous fingering,’’ Comput. Geosci. 22, 711–723 (2018). https://doi.org/10.1007/s10596-018-9721-0

    Article  MathSciNet  Google Scholar 

  3. S. A. Abdul Hamid and A. H. Muggeridge, ‘‘Fingering regimes in unstable miscible displacements,’’ Phys. Fluids 32, 016601 (2020). https://doi.org/10.1063/1.5128338

  4. A. S. Abushaikha and K. M. Terekhov, ‘‘A fully implicit mimetic finite difference scheme for general purpose subsurface reservoir simulation with full tensor permeability,’’ J. Comput. Phys. 406, 109194 (2020). https://doi.org/10.1016/j.jcp.2019.109194

  5. J. H. Adler, C. Cavanaugh, X. Hu, A. Huang, and N. Trask, ‘‘A stable mimetic finite-difference method for convection-dominated diffusion equations,’’ arXiv: 2208.04169 (2022). https://doi.org/10.48550/arXiv.2208.04169

  6. A. Beteta, K. S. Sorbie, and A. Skauge, ‘‘Immiscible viscous fingering: The simulation of tertiary polymer displacements of viscous oils in 2D slab floods,’’ Polymers 14, 4159 (2022). https://doi.org/10.3390/polym14194159

    Article  Google Scholar 

  7. M. Blunt and M. Christie, ‘‘Theory of viscous fingering in two phase, three component flow,’’ SPE Adv. Technol. Ser. 2 (02), 52–60 (1994). https://doi.org/10.2118/22613-PA

    Article  Google Scholar 

  8. A. Congiani, ‘‘On low order mimetic finite difference methods,’’ arXiv: 1208.4213 (2012). https://doi.org/10.48550/arXiv.1208.4213

  9. H. M. Cheng, ‘‘A fully local hybridised second-order accurate scheme for advection-diffusion equations,’’ arXiv: 2103.08551 (2021). https://doi.org/10.48550/arXiv.2103.08551

  10. H. M. Cheng and J. H. M. Boonkkamp, ‘‘A generalised complete flux scheme for anisotropic advection-diffusion equations,’’ Adv. Comput. Math. 47 (2), 19 (2021). https://doi.org/10.1007/s10444-021-09846-x

    Article  MathSciNet  Google Scholar 

  11. H. M. Cheng, J. H. M. Boonkkamp, J. Janssen, D. Mihailova, and J. van Dijk, ‘‘Combining the hybrid mimetic mixed method with the Scharfetter–Gummel scheme for magnetised transport in plasmas,’’ Part. Differ. Equat. Appl. 4 (6), 47 (2023). https://doi.org/10.1007/s42985-023-00265-9

    Article  MathSciNet  Google Scholar 

  12. R. L. Chuoke, P. van Meurs, and C. van der Poel, ‘‘The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media,’’ Trans. AIME 216, 188–194 (1959). https://doi.org/10.2118/1141-G

    Article  Google Scholar 

  13. L. B. da Veiga, J. Droniou, and G. Manzini, ‘‘A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems,’’ IMA J. Numer. Anal. 31, 1357–1401 (2011). https://doi.org/10.1093/imanum/drq018

    Article  MathSciNet  Google Scholar 

  14. D. A. Di Pietro, J. Droniou, and A. Ern, ‘‘A discontinuous-skeletal method for advection-diffusion-reaction on general meshes,’’ SIAM J. Numer. Anal. 53, 2135–2157 (2015). https://doi.org/10.1137/140993971

    Article  MathSciNet  Google Scholar 

  15. D. Rencheng, F. O. Alpak, and M. F. Wheeler, ‘‘Accurate multi-phase flow simulation in faulted reservoirs using mimetic finite difference methods on polyhedral cells,’’ in Proceedings of the SPE Annual Technical Conference and Exhibition (2021), p. D011S020R005. https://doi.org/10.2118/206298-MS

  16. J. Droniou, ‘‘Remarks on discretizations of convection terms in hybrid mimetic mixed methods,’’ Netw. Heterog. Media 5, 545–563 (2010). https://doi.org/10.3934/nhm.2010.5.545

    Article  MathSciNet  Google Scholar 

  17. F. J. Fayers, M. J. Blunt, and M. A. Christie, ‘‘Comparisons of empirical viscous-fingering models and their calibration for heterogeneous problems,’’ SPE Reserv. Eng. 7, 195–203 (1992). https://doi.org/10.2118/22184-PA

    Article  Google Scholar 

  18. X. Fu, L. Cueto-Felgueroso, and R. Juanes, ‘‘Viscous fingering with partially miscible fluids,’’ Phys. Rev. Fluids 2, 104001 (2017). https://doi.org/10.1103/PhysRevFluids.2.104001

  19. P. Grosfils and J. P. Boon, ‘‘Viscous fingering in miscible, immiscible and reactive fluids,’’ Int. J. Mod. Phys. B 17, 15–20 (2003). https://doi.org/10.1142/S0217979203017023

    Article  Google Scholar 

  20. J. D. Hyman, M. R. Sweeney, C. W. Gable, D. Svyatsky, K. Lipnikov, and J. D. Moulton, ‘‘Flow and transport in three-dimensional discrete fracture matrix models using mimetic finite difference on a conforming multi-dimensional mesh,’’ J. Comput. Phys. 466, 111396 (2022). https://doi.org/10.1016/j.jcp.2022.111396

  21. B. Jha, L. Cueto-Felgueroso, and R. Juanes, ‘‘Fluid mixing from viscous fingering,’’ Phys. Rev. Lett. 106, 194502 (2011). https://doi.org/10.1103/PhysRevLett.106.194502

  22. D. Keable, A. Jones, S. Krevor, A. Muggeridge, and S. J. Jackson, ‘‘The effect of viscosity ratio and Peclet number on miscible viscous fingering in a Hele-Shaw cell: A combined numerical and experimental study,’’ Transp. Porous Med. 143, 23–45 (2022). https://doi.org/10.1007/s11242-022-01778-4

    Article  Google Scholar 

  23. B. Lagrée, S. Zaleski, and I. Bondino, ‘‘Simulation of viscous fingering in rectangular porous media with lateral injection and two-and three-phase flows,’’ Transp. Porous Med. 113, 491–510 (2016). https://doi.org/10.1007/s11242-016-0707-x

    Article  MathSciNet  Google Scholar 

  24. L. David, ‘‘Petrov–Galerkin flux upwinding for mixed mimetic spectral elements, and its application to geophysical flow problems,’’ Comput. Math. Appl. 89, 68–77 (2021). https://doi.org/10.1016/j.camwa.2021.02.017

    Article  MathSciNet  Google Scholar 

  25. L. Li and A. Abushaikha, ‘‘A fully-implicit parallel framework for complex reservoir simulation with mimetic finite difference discretization and operator-based linearization,’’ Comput. Geosci. 26, 915–931 (2022). https://doi.org/10.1007/s10596-021-10096-5

    Article  MathSciNet  Google Scholar 

  26. K. Lipnikov, G. Manzini, J. D. Moulton, and M. Shashkov, ‘‘The mimetic finite difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient,’’ J. Comput. Phys. 305, 111–126 (2016). https://doi.org/10.1016/j.jcp.2015.10.031

    Article  MathSciNet  Google Scholar 

  27. K. Lipnikov, G. Manzini, and D. Svyatskiy, ‘‘Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems,’’ J. Comput. Phys. 230, 2620–2642 (2011). https://doi.org/10.1016/j.jcp.2010.12.039

    Article  MathSciNet  Google Scholar 

  28. K. Lipnikov, M. Shashkov, and D. Svyatskiy, ‘‘The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes,’’ J. Comput. Phys. 211, 473–491 (2006). https://doi.org/10.1016/j.jcp.2005.05.028

    Article  MathSciNet  Google Scholar 

  29. L. B. da Veiga, K. Lipnikov, and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems, Vol. 11 of Math. Sci. Appl. (Springer, New York, 2011). https://doi.org/10.1007/978-3-319-02663-3

  30. S. Mishra and E. Natarajan, ‘‘Local projection stabilization virtual element method for the convection-diffusion equation with nonlinear reaction term,’’ Comput. Math. Appl. 152, 181–198 (2023). https://doi.org/10.1016/j.camwa.2023.10.026

    Article  MathSciNet  Google Scholar 

  31. C. Nicolaides, B. Jha, L. Cueto-Felgueroso, and R. Juanes, ‘‘Impact of viscous fingering and permeability heterogeneity on fluid mixing in porous media,’’ Water Resour. Res. 51, 2634–2647 (2015). https://doi.org/10.1002/2014WR015811

    Article  Google Scholar 

  32. D. W. Peaceman, ‘‘Interpretation of well-block pressures in numerical reservoir simulation (includes associated paper 6988),’’ Soc. Pet. Eng. J. 18, 183–194 (1978). https://doi.org/10.2118/6893-PA

    Article  Google Scholar 

  33. P. Petitjeans, C.-Y. Chen, E. Meiburg, and T. Maxworthy, ‘‘Miscible quarter five-spot displacements in a hele-shaw cell and the role of flow-induced dispersion,’’ Phys. Fluids 11, 1705–1716 (1999). https://doi.org/10.1063/1.870037

    Article  MathSciNet  Google Scholar 

  34. A. Skauge, P. A. Ormehaug, T. Gurholt, B. Vik, I. Bondino, and G. Hamon, ‘‘2-D visualisation of unstable waterflood and polymer flood for displacement of heavy oil,’’ in Proceedings of the SPE Symposium on Improv. Oil Recovery, Tulsa, Oklahoma, USA, April 2012 (2012). https://doi.org/10.2118/154292-MS

  35. K. S. Sorbie, A. Y. Al Ghafri, A. Skauge, and E. J. Mackay, ‘‘On the modelling of immiscible viscous fingering in two-phase flow in porous media,’’ Transp. Porous Med. 135, 331–359 (2020). https://doi.org/10.1007/s11242-020-01479-w

    Article  MathSciNet  Google Scholar 

  36. F. Székely, ‘‘Mathematical modeling and numerical study of viscous fingering,’’ Master’s Thesis (Norwegian Univ. Sci. Technol., 2018). http://hdl.handle.net/11250/2561306

  37. K. Terekhov, ‘‘Parallel dynamic mesh adaptation within INMOST platform,’’ in Supercomputing: Revised Selected Papers of the 5th Russian Supercomputing Days, RuSCDays 2019, Moscow, Russia, September 23–24, 2019 (Springer, New York, 2019), pp. 313–326. https://doi.org/10.1007/978-3-030-36592-9_26

  38. K. Terekhov, ‘‘Greedy dissection method for shared parallelism in incomplete factorization within INMOST platform,’’ in Supercomputing: Revised Selected Papers of the 7th Russian Supercomputing Days, RuSCDays 2021, Moscow, Russia, September 27–28, 2021 (Springer, 2021), pp. 87–101. https://doi.org/10.1007/978-3-030-92864-3_7

  39. K. Terekhov and Y. Vassilevski, ‘‘Mesh modification and adaptation within INMOST programming platform,’’ in Numerical Geometry, Grid Generation and Scientific Computing: Proceedings of the 9th International Conference, NUMGRID 2018/Voronoi 150, Celebrating the 150th Anniversary of G.F. Voronoi, Moscow, Russia, December 2018 (Springer, 2019), pp. 243–255. https://doi.org/10.1007/978-3-030-23436-2_18

  40. K. M. Terekhov, ‘‘Multi-physics flux coupling for hydraulic fracturing modelling within INMOST platform,’’ Russ. J. Numer. Anal. Math. Model. 35, 223–237 (2020). https://doi.org/10.1515/rnam-2020-0019

    Article  MathSciNet  Google Scholar 

  41. K. M. Terekhov, I. D. Butakov, A. A. Danilov, and Y. V. Vassilevski, ‘‘Dynamic adaptive moving mesh finite-volume method for the blood flow and coagulation modeling,’’ Int. J. Numer. Method. Biomed. Eng., e3731 (2023). https://doi.org/10.1002/cnm.3731

  42. W. Tian, P. Li, Y. Liu, Z. Lu, and D. Lu, ‘‘The simulation of viscous fingering by using a diffusion-limited-aggregation model during CO\({}_{2}\) flooding,’’ J. Porous Media 21, 483–497 (2018). https://doi.org/10.1615/JPorMedia.v21.i6.10

    Article  Google Scholar 

  43. M. R. Todd and W. J. Longstaff, ‘‘The development, testing, and application of a numerical simulator for predicting miscible flood performance,’’ J. Pet. Technol. 24, 874–882 (1972). https://doi.org/10.2118/3484-PA

    Article  Google Scholar 

  44. N. Trask, P. Bochev, and M. Perego, ‘‘A conservative, consistent, and scalable meshfree mimetic method,’’ J. Comput. Phys. 409, 109187 (2020). https://doi.org/10.1016/j.jcp.2019.109187

  45. Y. V. Vassilevski and K. M. Terekhov, ‘‘Nonlinear finite volume method for the interface advection-compression problem on unstructured adaptive meshes,’’ Comput. Math. Math. Phys. 62, 1041–1058 (2022). https://doi.org/10.1134/S0965542522060148

    Article  MathSciNet  Google Scholar 

  46. Y. Vassilevski, K. Terekhov, K. Nikitin, and I. Kapyrin, Parallel Finite Volume Computation on General Meshes (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-47232-0

    Book  Google Scholar 

  47. B. Vik, A. Kedir, V. Kippe, K. Sandengen, T. Skauge, J. Solbakken, and D. Zhu, ‘‘Viscous oil recovery by polymer injection; impact of in-situ polymer rheology on water front stabilization,’’ in SPE Europec featured at 80th EAGE Conference and Exhibition (OnePetro, 2018). https://doi.org/10.2118/190866-MS

  48. Q. Yuan, X. Zhou, J. Wang, F. Zeng, K. D. Knorr, and M. Imran, ‘‘Control of viscous fingering and mixing in miscible displacements with time-dependent rates,’’ AIChE J. 65, 360–371 (2019). https://doi.org/10.1002/aic.16359

    Article  Google Scholar 

  49. N. Zhang and A. S. Abushaikha, ‘‘An implementation of mimetic finite difference method for fractured reservoirs using a fully implicit approach and discrete fracture models,’’ J. Comput. Phys. 446, 110665 (2021). https://doi.org/10.1016/j.jcp.2021.110665

Download references

Funding

This work has been supported by the Ministry of Education and Science of the Russian Federation, agreement no. 075-15-2022-286.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Abushaikha or K. Terekhov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted by Yu. V. Vassilevski)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abushaikha, A., Terekhov, K. Adaptive Dynamic Grids and Mimetic Finite Difference Method for Miscible Displacement Problem. Lobachevskii J Math 45, 143–154 (2024). https://doi.org/10.1134/S1995080224010025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080224010025

Keywords:

Navigation