Skip to main content
Log in

Bayesian Estimation and Prediction for Discrete Weibull Distribution

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

This article is devoted to the Bayesian estimation of the discrete Weibull distribution parameters. Bayesian procedure is performed with three prior distributions, namely Uniform-Gamma, Jeffreys’ rule, and Beta-Gamma. The performance of the Bayes estimators has also been compared with the classical estimators of the model parameters through the Monte Carlo simulation study. Moreover, Bayesian predictive inference is proposed and compared among three prior distributions. A real data set has been analyzed to show how the proposed model and the method work in practice. The simulation and real application results of over-dispersed data show that Beta-Gamma prior presents the best performance, while, in case of under-dispersed data, the Uniform-Gamma prior performs the best.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. W. Gardner, E. P. Mulvey, and E. C. Shaw, ‘‘Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models,’’ Psychol. Bull. 118, 392–404 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. P. D. Allison and R. P. Waterman, ‘‘Fixed-effects negative binomial regression models,’’ Sociol. Methodol. 32, 247–65 (2002).

    Article  Google Scholar 

  3. H. Liu, R. A. Davidson, D. V. Rosowsky, and J. R. Stedinger, ‘‘Negative binomial regression of electric power outages in hurricanes,’’ J. Infrastruct. Syst. 11, 258–67 (2005).

    Article  Google Scholar 

  4. B. Efron, ‘‘Double exponential families and their use in generalized linear regression,’’ J. Am. Stat. Assoc. 81, 709–721 (1986)

    Article  MathSciNet  Google Scholar 

  5. K. F. Sellers and A. G. Shmueli, ‘‘A flexible regression model for count data,’’ Ann. Appl. Stat. 4, 943–961 (2010).

    Article  MathSciNet  Google Scholar 

  6. H. S. Kalktawi, ‘‘Discrete Weibull regression model for count data,’’ Ph. D. Thesis (Brunel Univ., London, 2017).

  7. H. S. Kalktawi, V. Vinciotti, and K. Yu, ‘‘A simple and adaptive dispersion regression model for count data,’’ Entropy 20, 142 (2018).

    Article  ADS  Google Scholar 

  8. T. Nakagawa and S. Osaki, ‘‘The discrete Weibull distribution,’’ IEEE Trans Reliab. 24, 300–301 (1975).

    Article  Google Scholar 

  9. H. Haselimashhadi, V. Vinciotti, and K. Yu, ‘‘A novel Bayesian regression model for counts with an application to health data,’’ J. Appl. Stat. 45, 1085–1105 (2018).

    Article  MathSciNet  Google Scholar 

  10. A. Barbiero, ‘‘Discrete Weibull regression for modelling football outcomes,’’ Int. J. Bus. Intell. Data Min. 17, 76–100 (2020).

    Google Scholar 

  11. K. Collins, A. Waititu, and A. Wanjoya, ‘‘Discrete Weibull and artificial neural network models in modeling over-dispersed count data,’’ Int. J. Data Sci. Anal. 6, 153–62 (2020).

    Article  Google Scholar 

  12. D. Chaiprasithikul and M. Duangsaphon, ‘‘Bayesian inference for the discrete Weibull regression model with type-I right censored data,’’ Thailand Stat. 20, 791–811 (2022).

    Google Scholar 

  13. D. Chaiprasithikul and M. Duangsaphon, ‘‘Bayesian inference of discrete Weibull regression model for excess zero counts,’’ Sci. Technol. Asia 27, 152–174 (2022).

    Google Scholar 

  14. S. Unhapipat, M. Tiensuwan, and N. Pal, ‘‘Bayesian predictive inference for zero-inflated Poisson (ZIP) distribution with applications,’’ Am. J. Math. Manage. Sci. 37, 66–79 (2018).

    Google Scholar 

  15. S. K. Singh, U. Singh, and V. K. Sharma, ‘‘Bayesian estimation and prediction for flexible Weibull model under type-II censoring scheme,’’ J. Probab. Stat. 2013, 146140 (2013).

  16. Y.-H. Dai, ‘‘A perfect example for the BFGS method,’’ Math. Program. 138, 501–530 (2013).

    Article  MathSciNet  Google Scholar 

  17. R Core Team and Contributors Worldwide, General-Purpose Optimization. https://stat.ethz.ch/R-manual/R-devel/library/stats/html/optim.html. Accessed 2022

  18. S. K. Ashour and M. S. A. Muiftah, ‘‘Bayesian estimation of the parameters of discrete Weibull type (I) distribution,’’ J. Mod. Appl. Stat. Methods 18, eP2740 (2019).

  19. R Core Team and Contributors Worldwide, Cubature, Adaptive Multivariate Integration over Hypercubes. https://cran.r-project.org/web/packages/cubature/index.html. Accessed 2023.

  20. D. W. Hosmer, Jr. and S. Lemeshow, Applied Logistic Regression (Wiley, New York, 2004).

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monthira Duangsaphon.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted byW. Bodhisuwan)University of Regina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duangsaphon, M., Santimalai, R. & Volodin, A. Bayesian Estimation and Prediction for Discrete Weibull Distribution. Lobachevskii J Math 44, 4693–4703 (2023). https://doi.org/10.1134/S1995080223110124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223110124

Keywords:

Navigation