Skip to main content
Log in

Meshfree Multiscale Method for Richards’ Equation in Fractured Media

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we develop a meshfree multiscale method for solving the unsaturated filtration problem in fractured media described by Richards’ equation. This approach is based on Generalized Multiscale Finite Element Method (GMsFEM). Multiscale basis functions are constructed in the offline stage via local spectral problems. Meshfree method is used to solve the coarse-grid system. On the fine grid, the standard Finite Element Method (FEM) is used. To represent the fractures on the fine grid, we use Discrete Fracture Model (DFM). The results of comparing the solution on the coarse grid with the solution on the fine grid are shown numerically. In this work, we discuss handling nonlinearities within meshfree GMsFEM. Our numerical results show a good agreemenet between coarse and fine grids solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. K. Rathfelder and L. M. Abriola, ‘‘Mass conservative numerical solutions of the head-based Richards equation,’’ Water Resour. Res. 30, 2579–2586 (1994).

    Article  Google Scholar 

  2. P. J. Ross, ‘‘Efficient numerical methods for infiltration using Richards’ equation,’’ Water Resour. Res. 26, 279–290 (1990).

    Article  Google Scholar 

  3. S. P. Stepanov, A. V. Grigoriev, and N. M. Afanasyeva, ‘‘Simulation of the process of infiltration into fractured porous soil in permafrost,’’ Math. Notes NEFU 27, 105–117 (2020).

    Google Scholar 

  4. S. Stepanov, D. Nikiforov, and A. Grigorev, ‘‘Multiscale multiphysics multiphysics modeling of the infiltration process in the permafrost,’’ Mathematics 9, 2545 (2021).

    Article  Google Scholar 

  5. D. Nikiforov, ‘‘Meshfree generalized multiscale finite element method,’’ J. Comput. Phys. 474, 111798 (2023).

  6. Y. Efendiev and T. Y. Hou, Multiscale Finite Element Methods: Theory and Applications, Vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences (Springer Science, New York, 2009).

  7. Y. Efendiev, J. Galvis, and T. Y. Hou, ‘‘Generalized multiscale finite element methods,’’ J. Comput. Phys. 251, 116–135 (2013).

    Article  MathSciNet  Google Scholar 

  8. Y. Efendiev, S. Lee, G. Li, J. Yao, and N. Zhang, ‘‘Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method,’’ Int. J. Geomath. 6, 141–162 (2015).

    Article  MathSciNet  Google Scholar 

  9. E. T. Chung, Y. Efendiev, and G. Li, ‘‘An adaptive GMsFEM for high-contrast flow problems,’’ J. Comput. Phys. 273, 54–76 (2014).

    Article  MathSciNet  Google Scholar 

  10. D. Nikiforov, M. Vasilyeva, Y. Efendiev, and V. Vasil’ev, ‘‘GMsFEM on unstructured grids for single-phase flow in fractured porous media,’’ J. Phys.: Conf. Ser. 1392, 012071 (2019).

  11. P. V. Sivtsev, P. Smarzewski, and S. P. Stepanov, ‘‘Numerical study of soil-thawing effect of composite piles using GMsFEM,’’ J. Compos. Sci. 5 (7), 167 (2021).

    Article  Google Scholar 

  12. D. Spiridonov, M. Vasilyeva, A. Tyrylgin, and E. T. Chung, ‘‘An online generalized multiscale finite element method for unsaturated filtration problem in fractured media,’’ Mathematics 9, 1382 (2021).

    Article  Google Scholar 

  13. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, ‘‘Meshless methods: An overview and recent developments,’’ Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996).

    Article  Google Scholar 

  14. G. R. Liu, Meshfree Methods: Moving beyond the Finite Element Method (CRC, Boca Raton, FL, 2009).

    Book  Google Scholar 

  15. M. V. Vasilyeva, V. I. Vasilyev, A. A. Krasnikov, and D. Ya. Nikiforov, ‘‘Numerical simulation of single-phase fluid flow in fractured porous media,’’ Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 159, 100–115 (2017).

    Google Scholar 

  16. V. I. Vasil’ev, M. V. Vasil’eva, V. S. Gladkikh, V. P. Ilin, D. Ya. Nikiforov, D. V. Perevozkin, and G. A. Prokop’ev, ‘‘Numerical solution of a fluid filtration problem in a fractured medium by using the domain decomposition method,’’ J. Appl. Ind. Math. 12, 785–796 (2018).

    Article  MathSciNet  Google Scholar 

  17. D. Y. Nikiforov and S. P. Stepanov, ‘‘Numerical simulation of the embedded discrete fractures by the finite element method,’’ J. Phys.: Conf. Ser. 1158, 032038 (2019).

  18. L. Ju, Q. Du, and M. Gunzburger, ‘‘Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations,’’ Parallel Comput. 28, 1477–1500 (2002).

    Article  MathSciNet  Google Scholar 

  19. M. Griebel and M. A. Schweitzer, ‘‘A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs,’’ SIAM J. Sci. Comput. 22, 853–890 (2000).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The D.Y.N.’s work is supported by the Ministry of science and Higher Education of the Russian Federation, agreement no. 075-02-2023-947, February 16, 2023 and Ministry of Science and Higher Education of the Russian Federation (Grant no. FSRG-2023-0025). The research of YY is supported by the National Natural Science Foundation of China Project (12261131501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Y. Nikiforov or Y. Yang.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforov, D.Y., Yang, Y. Meshfree Multiscale Method for Richards’ Equation in Fractured Media. Lobachevskii J Math 44, 4135–4142 (2023). https://doi.org/10.1134/S1995080223100293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223100293

Keywords:

Navigation