Skip to main content
Log in

Evolutionary Systems and Flows on Solutions Spaces of Finite Type Equations

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The article is devoted to extending the methods of the theory of finite dimensional dynamics to systems of evolutionary differential equations with several space variables.

As an example, we consider the Boussinesq system with two space variables. Finite dimensional dynamics and parametric family of exact solutions are constructed for this equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. V. Akhmetzyanov, A. G. Kushner, and V. V. Lychagin, ‘‘Attractors in models of porous media flow,’’ Dokl. Math. 472, 627–630 (2017).

    MATH  Google Scholar 

  2. S. V. Duzhin and V. V. Lychagin, ‘‘Symmetries of distributions and quadrature of ordinary differential equations,’’ Acta Appl. Math. 24, 29–57 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. B. Shabat, Encyclopedia of Integrable Systems. http://home.itp.ac.ru/adler/E/e.pdf.

  4. I. S. Krasilshchik, V. V. Lychagin, and A. M. Vinogradov, Geometry of Jet Spaces and Nonlinear Partial Differential Equations (Gordon and Breach, New York, 1986).

    Google Scholar 

  5. B. S. Kruglikov and O. V. Lychagina, ‘‘Finite dimensional dynamics for Kolmogorov–Petrovsky–Piskunov equation,’’ Lobachevskii J. Math. 19, 13–28 (2005).

    MathSciNet  MATH  Google Scholar 

  6. A. A. Gorinov and A. G. Kushner, ‘‘Dynamics of evolutionary PDE systems,’’ Lobachevskii J. Math. 41, 2448–2457 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. G. Kushner and R. I. Matviichuk, ‘‘Exact solutions of the Burgers–Huxley equation via dynamics,’’ J. Geom. Phys. 151, 103615 (2020).

  8. A. G. Kushner and R. I. Matviichuk, ‘‘Dynamics and exact solutions of non-evolutionary partial differential equations,’’ Differ. Geom. Appl. 76, 101761 (2021).

  9. A. G. Kushner and R. I. Matviichuk, ‘‘Finite dimensional dynamics of evolutionary equations with maple,’’ in Differential Geometry, Differential Equations, and Mathematical Physics, The Wisla 19 Summer School, Ed. by M. Ulan and E. Schneider (Springer, Birkhäuser, 2021), pp. 115–139.

  10. A. Kushner, E. Kushner, and S. Tao, ‘‘Dynamics of evolutionary equations with 1+2 independent variables,’’ Adv. Syst. Sci. Appl. 22 (4), 1–10 (2022).

    Google Scholar 

  11. A. Kushner, ‘‘Dynamics of evolutionary differential equations with several spatial variables,’’ Mathematics 11, 335–346 (2023).

    Article  Google Scholar 

  12. A. G. Kushner, V. V. Lychagin, and V. N. Rubtsov, Contact Geometry and Nonlinear Differential Equations, Vol. 101 of Encyclopedia of Mathematics and Its Applications (Cambridge Univ. Press, Cambridge, 2007).

  13. V. V. Lychagin and O. V. Lychagina, ‘‘Finite dimensional dynamics for evolutionary equations,’’ Nonlin. Dyn. 48, 29–48 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Matviichuk, ‘‘Dynamics and exact solutions of the generalized Harry Dym equation,’’ Proc. Int. Geom. Center 12, 50–59 (2020).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was partially supported by the Russian Science Foundation (grant 23-21-00390).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Kushner or T. Sinian.

Additional information

(Submitted by A. M. Elizarov)

APPENDIX

APPENDIX

Here we provide the Maple code for computing dynamics and solutions of the Boussinesq equations from the previous section.

>restart;

>with(DifferentialGeometry):with(JetCalculus):with(Tools):with(PDETools):

>Preferences("JetNotation", "JetNotation2"):

>DGsetup([x,y], [v,w], M, 3, verbose);

>e1:=diff(u(t, x, y),t)-diff(u(t, x, y),x$ 2)-2*diff(v(t, x, y),x):

e2:=diff(v(t, x, y),t)+diff(v(t, x, y),x$ 2)-2*u(t, x, y)*diff(u(t, x, y),x)

+2*diff(u(t, x, y),y):

>psi1:=v[2,0]+2*w[1,0]; psi_2:=-w[2,0]+2*v[0]*v[1,0]-2*v[0];

>A:=a(x, y): B:=b(x, y): C:=c(x, y): P:=p(x, y): Q:=q(x, y): R:=r(x, y):

>F:=v[2,0]=A, v[1,1]=B,v[0]=C, w[2,0]=P, w[1,1]=Q,w[0]=R:

>F3:={map(TotalDiff,F[1],x),map(TotalDiff,F[1],y),map(TotalDiff,F[2],x),

map(TotalDiff,F[2],y),map(TotalDiff,F[3],x),map(TotalDiff,F[3],y),

map(TotalDiff,F[4],x),map(TotalDiff,F[4],y)}:

>sub:={op(F2),op(F3)}:

>phi1:=eval(psi1,sub); phi2:=eval(psi2,sub);

>omega[1]:=eval(evalDG(dv[0]-v[1,0]*dx-v[0]*dy),sub);

omega[2]:=eval(evalDG(dw[0]-w[1,0]*dx-w[0]*dy),sub);

omega[3]:=eval(evalDG(dv[1,0]-v[2,0]*dx-v[1,1]*dy),sub);

omega[4]:=eval(evalDG(dv[0]-v[1,1]*dx-v[0]*dy),sub);

omega[5]:=eval(evalDG(dw[1,0]-w[2,0]*dx-w[1,1]*dy),sub);

omega[6]:=eval(evalDG(dw[0]-w[1,1]*dx-w[0]*dy),sub);

>Frob:=[]:

for i from 3 by 1 to 6 do Frob:=[op(Frob),

evalDG(ExteriorDerivative(omega[i]) & w omega[1] & w

omega[2] & w omega[3] & w omega[4] & w omega[5] & w omega[6])] end do:

W:=[]:

for i from 1 by 1 to nops(Frob) do W:=[op(W),op(DGinfo(Frob[i],

"CoefficientList", "all"))] end do:

>phi1:=eval(psi1,sub): phi2:=eval(psi2,sub):

S:=evalDG(phi1*D_v[0]+phi2*D_w[0]+TotalDiff(phi1,x)*D_v[1,0]

+TotalDiff(phi2,x)*D_w[1,0]+TotalDiff(phi1,y)*D_v[0]+TotalDiff(phi2,y)*D_w[0]):

>S:=eval(S,sub);

>mu:=evalDG(omega[1] & w omega[2] & w omega[3] & w

omega[4] & w omega[5] & w omega[6]):

>Lee:=alpha->DGinfo(evalDG(LieDerivative(S,alpha) & w mu),

"CoefficientList", "all"):

>L:=W:

for i from 3 to 6 do L:=[op(L),op(Lee(omega[i]))] end do:

>cf:=z->coeffs(collect(z,{v[2, 0], v[1, 1], v[0, 2], w[2, 0], w[1, 1],

w[0]},’distributed’),{v[2, 0], v[1, 1], v[0, 2], w[2, 0], w[1, 1], w[0]});

>N:=[]:

for i from 1 to nops(L) do N:=[op(N),cf(L[i])] end do:

>cfp:=z->coeffs(collect(z,v[0],w[0],v[1, 0], v[0], w[1, 0], w[0],

’distributed’),v[1, 0], v[0], w[1, 0], w[0, 1]);

>G:=L:

for i from 1 to nops(N) do G:=[op(G),cfp(N[i])] end do:

>solution_G :=pdsolve(G);

As a result, we get

$$solution\_G:=\{a(x,y)=0,b(x,y)=0,c(x,y)=0,$$
$$p(x,y)=\_C1,q(x,y)=\_C2,r(x,y)=\_F1(y)\}$$

>solution_G1:=eval(solution_G,{_C1=eta,_C2=delta,_F1(y)=h(y)}):

>F:=eval(F,solution_G1);

>F3:={map(TotalDiff,F[1],x),map(TotalDiff,F[1],y),

map(TotalDiff,F[2],x),map(TotalDiff,F[2],y),

map(TotalDiff,F[3],x),map(TotalDiff,F[3],y),

map(TotalDiff,F[4],x),map(TotalDiff,F[4],y)};

>sub2:={op(F),op(F3)}:

>S:=eval(eval(S,solution_G1),sub2):

>Phi:=Flow(S,t):

>Xi:=simplify(InverseTransformation(Phi),power):

>dF:=convert(F,DGdiff):

>dF:=eval(eval(dF,solution_G1),sub2):

>sol_dF:=pdsolve(dF):

We get

$$sol\_dF:=\{h(y)=diff(\_F2(y),y,y),v(x,y)=\_C3y+\_C1x$$
$$+\_C2,w(x,y)=(1/2)x^{2}\eta+x\delta y+\_C4x+\_F2(y)\}$$

Therefore, we put

>V:=[v[0]-(C1*x+C2*y+C3),w[0] -((1/2)*eta*x2̂

+x*delta*y+g(y)+x*C4)]:

>vec:=[V[1],V[2],TotalDiff(V[1],x),TotalDiff(V[2],x),

TotalDiff(V[1],y),TotalDiff(V[2],y)]:

> PV:=Pullback(Xi,vec):

>resh:=solve(PV,v[0],w[0],v[1,0],w[1,0],v[0],w[0]):

>zam:={u(t,x,y)=rhs(resh[1]),v(t,x,y)=rhs(resh[4])}

This is a required solution. Let us check:

simplify(eval([e1,e2],zam));

We have \([0,0]\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushner, A.G., Sinian, T. Evolutionary Systems and Flows on Solutions Spaces of Finite Type Equations. Lobachevskii J Math 44, 3945–3951 (2023). https://doi.org/10.1134/S1995080223090184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223090184

Keywords:

Navigation