Skip to main content
Log in

On Various Equations of the Analytical Mechanics of Thick-Walled Heterogeneous Shells and Some of Their Applications in Wave Dispersion Problems

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A new variational formulation for the linear hierarchical theory of thick heterogeneous orthotropic shells resulting in the equations resolved for first-order covariant derivatives along one vector field is proposed. The shell theory of Nth order is constructed on the background of the Lagrangian formalism of the analytical mechanics of continua and the dimensional reduction approach combined with the biorthogonal expansion technique. Primo, the three-dimensional model of an elastic shell is referred to a curvilinear frame normally attached to a two-dimensional smooth oriented manifold corresponding to some base surface and represented as Lagrangian system with one field variable, the quasi-translation vector defined on the cotangent fibration of two-dimensional manifold, and the volumetric density of Lagrange’s functional. Secundo, one of the coordinates on the manifold is selected, and the quasi-stress vector on surfaces normal to the base vector corresponding to this coordinate is defined by differentiation of the Lagrangian density on covariant derivative of the quasi-translation. Application of the Legendre transform to the Lagrangian results in the volumeric density of the new mixed functional depending on the quasi-translation, quasi-stress, and time and remaining spatial derivatives of the quasi-translation. Use of the biorthogonal expansions for both quasi-translation and quasi-stress leads hence to the system of field variables of the first kind and generalized forces and consequently to the surface and contour density of the new functional interpreted as generalized Routh functional of a two-dimensional continuum system. Finally, application of the Hamilton principle results in the statement of the initial-boundary value problem for the system of equations resolved for the first-order covariant derivatives of field variables and generalized forces and interpreted as generalized Routh equations for a shell model as continuum-discrete system. The use of the obtained shell theory formulation in problems of normal wave dispersion in heterogeneous elastic waveguides for the analysis of imaginary and complex branches corresponding to evanescent wave modes is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. Ch. Othmani, H. Zhang, C. Lu, Y. Q. Wang, and A. R. Kamali, ‘‘Orthogonal polynomial methods for modeling elastodynamic wave propagation in elastic, piezoelectric and magneto-electro-elastic composites—A review,’’ Compos. Struct. 286, 115245 (2022).

    Article  Google Scholar 

  2. S. I. Zhavoronok, ‘‘Wave dispersion in heterogeneous waveguides: Methods of solution (a review). Part I,’’ Mekh. Kompoz. Mater. Konstrukts. 27, 227–260 (2021).

    Google Scholar 

  3. S. I. Zhavoronok, ‘‘Wave dispersion in heterogeneous waveguides: Methods of solution (a review). Part II,’’ Mekh. Kompoz. Mater. Konstrukts. 28, 36–86 (2022).

    Google Scholar 

  4. V. T. Grinchenko and V. V. Meleshko, Harmonic Oscillations and Waves in Elastic Bodies (Nauk. Dumka, Kiev, 1981) [in Russian].

    MATH  Google Scholar 

  5. Y. K. An, ‘‘Measurement of crack-induced non-propagating Lamb wave modes under varying crack widths,’’ Int. J. Sol. Struct. 62, 134–143 (2015).

    Article  Google Scholar 

  6. A. H. Fahmy and L. Adler, ‘‘Propagation of surface waves in multilayers: A matrix description,’’ Appl. Phys. Lett. 22, 495 (1973).

    Article  Google Scholar 

  7. A. A. Maradudin, R. F. Wallis, D. R. Mills, and R. L. Ballard, ‘‘Vibrational edge modes in finite crystals,’’ Phys. Rev. B 6, 1106 (1972).

    Article  Google Scholar 

  8. J. E. Lefebvre, V. Zhang, J. Gazalet, and T. Gryba, ‘‘Legendre polynomial approach for modellinf free-ultrasonic waves in multilayered plates,’’ J. Appl. Phys. 85, 3419 (1999).

    Article  Google Scholar 

  9. L. Elmaimouni, J. E. Lefebvre, V. Zhang, and T. Gryba, ‘‘Guided waves in radially graded cylinders: A polynomial approach,’’ NDT & E Int. 38, 344 (2005).

    Article  MATH  Google Scholar 

  10. I. N. Vekua, Shell Theories: General Methods of Construction (Pitman Adv. Publ. Progr., Boston, 1985).

    Google Scholar 

  11. A. A. Amosov, ‘‘An approximate three-dimensional theory of thick plates and shells,’’ Stroit. Mekh. Proektir. Zdanii 5, 37 (1987).

    Google Scholar 

  12. A. A. Amosov and S. I. Zhavoronok, ‘‘Reduction of the plane problem of elasticity theory to a sequence of one-dimensional boundary-value problems,’’ Mekh. Kompoz. Mater. Konstrukts. 3, 69 (1997).

    Google Scholar 

  13. A. A. Amosov, A. A. Knyazev, and S. I. Zhavoronok, ‘‘On solution of 2D-problem of stressed curvilinear trapezoid,’’ Mekh. Kompoz. Mater. Konstrukts. 5, 60 (1999).

    Google Scholar 

  14. A. A. Amosov and S. I. Zhavoronok, ‘‘An approximate high-order theory of thick anisotropic shells,’’ Int. J. Comput. Civil Struct. Eng. 1, 28 (2003).

    Google Scholar 

  15. J. G. Yu, J. E. Lefebvre, W. J. Xu, J. Benmeddour, and X. M. Zheng, ‘‘Propagating and non-propagating waves in infinite plates and rectangular cross-section plates: Orthogonal polynimial approach,’’ Acta Mech. 228, 3755 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Zhang, J. G. Yu, X. M. Zhang, and P. M. Ming, ‘‘Complex guided waves in functionally graded piezoelectric cylindrical structures with sectorial cross-section,’’ Appl. Math. Model. 63, 288 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  17. X. Zhang, Z. Li, and J. Yu, ‘‘Complex dispersion solutions for guided waves and properties of non-propagating waves in a piezoelectric spherical plate,’’ Adv. Mech. Eng. 10, 1 (2018).

    Article  Google Scholar 

  18. X. M. Zhang, Z. H. Li, and J. G. Yu, ‘‘Evanescent waves in FGM spherical curved plates: An analytical treatment,’’ Meccanica 53, 2145 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  19. X. Zhang, Z. Li, J. Yu, and P. Ming, ‘‘Guided evanescent waves in spherically curved plates composed of fiber reinforced composites,’’ Acta Mech. 230, 1219 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  20. X. Zhang, Z. Li, J. Yu, and B. Zhang, ‘‘Properties of circumferential non-propagating waves in functionally graded piezoelectric cylindrical shells,’’ Adv. Mech. Eng. 11, 1 (2019).

    Google Scholar 

  21. X. Zhang, Z. Li, X. Wang, and J. G. Yu, ‘‘The fractional Kelvin–Voigt model for circumferential guided waves in a viscoelastic FGM hollow cylinder,’’ Appl. Math. Model. 89, 299 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Zhang, S. Wu, J. Yu, P. Wang, X. Zhang, and Y. Zhang, ‘‘Propagation and attenuation of Lamb waves in functionally graded fractional viscoelastic soft plates with a pre-deformation,’’ Compos. Struct. 293, 115727 (2022).

    Article  Google Scholar 

  23. B. Zhang, L. J. Li, J. G. Yu, and L. Elmaimouni, ‘‘Generalized thermo-elastic waves propagating in bars with a rectangular cross-section,’’ Arch. Appl. Mech. 92, 785 (2022).

    Article  Google Scholar 

  24. R. L. Goldberg, M. J. Jurgens, et al.,‘‘Modelling of piezoelectric multilayer ceramics using finite element analysis,’’ IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 44, 1204 (1997).

    Article  Google Scholar 

  25. S. Ballandras, A. Reinhardt, V. Laude, A. Soufyane, S. Camou, W. Daniau, T. Pasteraud, W. Steiner, R. Lardat, M. Solal, et al., ‘‘Simulations of surface acoustic wave devices built on stratified media using a mixed finite element / boundary element integral formulation,’’ J. Appl. Phys. 96, 7731 (2004).

    Article  Google Scholar 

  26. D. W. Loveday, ‘‘Semi-analytical finite element analysis of elastic waveguides subjected to axial loads,’’ Ultrasonics 49, 298 (2009).

    Article  Google Scholar 

  27. R. B. Nelson, S. B. Dong, and R. D. Kalra, ‘‘Vibrations and waves in laminated orthotropic circular cylinders,’’ J. Sound Vibrat. 18, 429 (1971).

    Article  MATH  Google Scholar 

  28. P. Zuo, X. Yu, and Z. Fan, ‘‘Acoustoelastic guided waves in waveguides with arbitrary prestress,’’ J. Sound Vibrat. 469, 115113 (2020).

    Article  Google Scholar 

  29. R. Gavric, ‘‘Computation of propagative waves in free rail using a finite element technique,’’ J. Sound Vibrat. 185, 531 (1995).

    Article  MATH  Google Scholar 

  30. R. Joseph, L. Li, M. F. Haider, and V. Giurgiutiu, ‘‘Hybrid SAFE-GMM approach for predictive modeling of guided wave propagation in layered media,’’ Eng. Struct. 193, 194 (2019).

    Article  Google Scholar 

  31. W. Duan and T. H. Gan, ‘‘Investigation of guided wave properties of anisotropic composite laminates using a semi-analytical finite element method,’’ Composites, Part B 173, 106898 (2019).

    Article  Google Scholar 

  32. S. I. Zhavoronok, in Shell Structures: Theory and Applications, Ed. by W. Pietraszkiewicz and J. Górski (CRC Press/Balkema, Taylor and Francis Group, London, 2014), Vol. 3, pp. 341–344.

  33. S. I. Zhavoronok, ‘‘A Vekua-type linear theory of thick elastic shells,’’ Zeitschr. Angew. Math. Mech. 94, 164 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  34. V. I. Gulyaev, V. A. Bazhenov, and P. P. Lizunov, The Nonclassical Theory of Shells and its Application to the Solution of Engineering Problems (Vishcha Shkola, Lvov, 1978) [in Russian].

    Google Scholar 

  35. S. I. Zhavoronok, ‘‘High order anisotropic shells models,’’ Mekh. Kompoz. Mater. Konstrukts. 14, 561 (2008).

    Google Scholar 

  36. I. Y. Khoma, Generalized Theory of Anisotropic Shells (Naukova Dumka, Kiev, 1986) [in Russian].

    Google Scholar 

  37. C. Schwab and S. Wright, ‘‘Boundary layers of hierarchical beam and plate models,’’ J. Elasticity 38, 1 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  38. V. V. Zozulya, ‘‘A higher order theory for shells, plates and rods,’’ Int. J. Mech. Sci. 103, 40 (2015).

    Article  Google Scholar 

  39. B. D. Annin and Y. M. Volchkov, ‘‘Nonclassical models of the theory of plates and shells,’’ J. Appl. Mech. Tech. Phys. 57, 769 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  40. O. V. Egorova, A. S. Kurbatov, L. N. Rabinskiy, and S. I. Zhavoronok, ‘‘Modeling of the dynamics of plane functionally graded waveguides based on the different formulations of the plate theory of I. N. Vekua type,’’ Mech. Adv. Mater. Struct. 28, 506 (2021).

    Article  Google Scholar 

  41. S. I. Zhavoronok, ‘‘On the variational formulation of the extended thick anisotropic shells theory of I. N. Vekua type,’’ Proc. Eng. 111, 888 (2015).

    Article  Google Scholar 

  42. O. V. Egorova, A. S. Kurbatov, and S. I. Zhavoronok, ‘‘The variational equations of the extended Nth order shell theory and its application to some problems of dynamics,’’ PNPU Mech. Bull. 2, 36–59 (2015).

    Article  Google Scholar 

  43. S. I. Zhavoronok, ‘‘On the use of extended plate theories of Vekua–Amosov type for vave dispersion problems,’’ Int. J. Comput. Civil Struct. Eng. 14, 36 (2018).

    Article  Google Scholar 

  44. S. I. Zhavoronok, ‘‘On the use of various equations of the Nth order plate theory in problems of normal wave dispersion in an elastic layer,’’ Mekh. Kompoz. Mater. Konstrukts. 24, 595 (2019).

    Google Scholar 

  45. O. V. Egorova, L. N. Rabinskiy, and S. I. Zhavoronok, ‘‘Use of the higher-order plate theory of I. N. Vekua type in problems of dynamics of heterogeneous plane waveguides,’’ Arch. Mech. 72, 3 (2020).

    MathSciNet  MATH  Google Scholar 

  46. S. I. Zhavoronok, ‘‘Modelling normal waves in functionally graded layers based on the unified hierarchical formulation of higher-order plate theories,’’ Compos.: Mech., Comput., Appl. 11, 159 (2020).

    Google Scholar 

  47. S. I. Zhavoronok, ‘‘An application of the Nth order extended plate theory in the wave dispersion problem for a functionally graded layer,’’ Mekh. Kompoz. Mater. Konstrukts. 25, 240 (2019).

    Google Scholar 

  48. S. I. Zhavoronok, A. S. Kurbatov, and L. N. Rabinskii, ‘‘The generalized routh equations in the plate theory of Nth order and their use in problems of normal wave dispersion in heterogeneous waveguides,’’ Lobachevskii J. Math. 43, 2010–2018 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  49. S. I. Zhavoronok and A. S. Kurbatov, ‘‘The generalized Routh equations in the orthotropic shell theory of N-th order and their application to normal wave dispersion problems,’’ Mekh. Kompoz. Mater. Konstrukts. 28, 399 (2022).

    Google Scholar 

  50. S. I. Zhavoronok, ‘‘On different definitions of strain tensors in general shell theories of Vekua–Amosov type,’’ Int. J. Comput. Civil Struct. Eng. 17, 72 (2021).

    Article  Google Scholar 

  51. A. I. Lurie, Nonlinear Elasticity Theory (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  52. N. A. Kil’chevslii, G. A. Kil’chinskaia, and N. E. Tkachenko, Basics of the Analytical Mechanics of Continuum Systems (Nauk. Dumka, Kiev, 1979) [in Russian].

    Google Scholar 

  53. J. Q. Tarn and H. H. Chang, ‘‘A Hamiltonian state space approach to anisotropic elasticity and piezoelasticity,’’ Acta Mech. 224, 1271 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  54. L. N. Rabinsky and S. I. Zhavoronok, ‘‘Axisymmetric problem of unsteady interaction of acoustic pressure waves with elastic shell of revolution,’’ Mekh. Kompoz. Mater. Konstrukts. 12, 541 (2006).

    Google Scholar 

  55. O. V. Egorova, S. I. Zhavoronok, and L. N. Rabinskiy, ‘‘Interaction of a medium-thickness shell and an acoustical wave,’’ Aerospace MAI J. 17, 127 (2010).

    Google Scholar 

  56. V. F. Formalev, S. A. Kolesnik, E. L. Kuznetsova, and L. N. Rabinskiy, ‘‘On the features of heat transfer in anisotropic regions with discontinuous thermal-physical characteristics,’’ Int. J. Pure Appl. Math. 111, 303 (2016).

    Google Scholar 

  57. L. N. Rabinskiy and E. L. Kuznetsova, ‘‘An alytical and numerical study of heat and mass transfer in composite materials on the basis of the solution of a stefan-type problem,’’ Per. Tche Quim. 15, 339 (2018).

    Google Scholar 

  58. A. A. Orekhov, L. N. Rabinskiy, G. V. Fedotenkov, and T. Z. Hein, ‘‘Heating of a half-space by a moving thermal laser pulse source,’’ Lobachevskii J. Math. 42, 1912–1919 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  59. V. N. Dobryanskiy, G. V. Fedotenkov, A. A. Orekhov, and L. N. Rabinskiy, ‘‘Estimation of finite heat distribution rate in the process of intensive heating of solids,’’ Lobachevskii J. Math. 43, 1832–1841 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  60. G. Fedotenkov, L. Rabinskiy, and S. Lurie, ‘‘Conductive heat transfer in materials under intense heat flows,’’ Symmetry 14, 1950 (2022).

    Article  Google Scholar 

Download references

Funding

This investigation was supported by the Russian Scientific Foundation under the grant no. 22-21-00800.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. I. Zhavoronok, A. S. Kurbatov or O. V. Egorova.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhavoronok, S.I., Kurbatov, A.S. & Egorova, O.V. On Various Equations of the Analytical Mechanics of Thick-Walled Heterogeneous Shells and Some of Their Applications in Wave Dispersion Problems. Lobachevskii J Math 44, 2501–2517 (2023). https://doi.org/10.1134/S1995080223060458

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223060458

Keywords:

Navigation