Skip to main content
Log in

Numerical Simulation of Collapse and Rebound of a Cavitation Bubble in Water

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A numerical technique for studying the collapse and rebound of a spherical cavitation bubble in an unbounded volume of water is presented (the bubble is filled with water vapor). The dynamics of the vapor in the bubble and the surrounding liquid is governed by the equations of gas dynamics with allowing for the heat conductivity of the fluids, the heat and mass exchange across the bubble surface. The governing equations of the vapor and liquid dynamics are closed by the known wide-range equations of state by Nigmatulin and Bolotnova. The numerical solution is calculated by the Godunov method on moving grids refined to the bubble surface according to the geometric progression. The infinite liquid area is replaced by a spherical layer, on the external surface of which a ‘‘non-reflecting’’ boundary condition is posed. The role of such a condition is played by the Rayleigh–Plesset equation. The efficiency of this technique is illustrated by comparison of its results with the available numerical solutions and the experimental data on the cavitation bubble collapse and rebound in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. C. L. Brennen, Hydrogynamics of Pumps (Concepts NREC, Oxford Univ. Press, 1994).

  2. J. P. Tullis, Hydraulics of Pipelines: Pumps, Valves, Cavitation, Transients (Wiley, Chichester, 1989).

    Book  Google Scholar 

  3. X. Escaler, E. Egusquiza, M. Farhat, F. Avellan, and M. Coussirat, ‘‘Detection of cavitation in hydraulic turbines,’’ Mech. Syst. Signal Process. 20, 983–1007 (2006).

    Article  Google Scholar 

  4. F. Caupin and E. Herbert, ‘‘Cavitation in water: A review,’’ C. R. Phys. 7, 1000–1017 (2006).

    Article  Google Scholar 

  5. T. Terwisga, E. van Wijngaarden, J. Bosschers, and G. Kuiper, ‘‘Achievements and challenges in cavitation research on ship propellers,’’ Int. Shipbuild. Progr. 54, 165–187 (2007).

    Google Scholar 

  6. O. Supponen, D. Obreschkow, P. Kobel, N. Dorsaz, and M. Farhat, ‘‘Detailed experiments on weakly deformed cavitation bubbles,’’ Exp. Fluids 60 (2) (2019).

  7. W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, ‘‘Laser-induced cavitation bubbles for cleaning of solid surfaces,’’ J. Appl. Phys. 95, 2952–2956 (2004).

    Article  Google Scholar 

  8. A. Coleman, J. Saunders, L. Crum, and M. Dyson, ‘‘Acoustic cavitation generated by an extracorporeal shockwave lithotripter,’’ Ultrasound Med. Biol. 13, 69–76 (1987).

    Article  Google Scholar 

  9. A. Vogel, S. Busch, and U. Parlitz, ‘‘Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,’’ J. Acoust. Soc. Am. 100, 148–165 (1996).

    Article  Google Scholar 

  10. A. Skolarikos, G. Alivizatos, and J. de la Rosette, ‘‘Extracorporeal shock wave lithotripsy 25 years later: Complications and their prevention,’’ Eur. Urol. 50, 981–990 (2006).

    Article  Google Scholar 

  11. R. I. Nigmatulin, A. A. Aganin, D. Y. Toporkov, and M. A. Il’gamov, ‘‘Formation of convergent shock waves in a bubble upon its collapse,’’ Dokl. Phys. 59, 431–435 (2014).

    Article  Google Scholar 

  12. R. I. Nigmatulin and R. K. Bolotnova, ‘‘Wide-range equation of state of water and steam: Simplified form,’’ High Temp. 49, 303–306 (2008).

    Article  Google Scholar 

  13. S. K. Godunov, A. V. Zabrodin, M. Y. Ivanov, A. N. Krayko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  14. A. A. Aganin and I. N. Mustafin, ‘‘Outgoing shock waves at collapse of a cavitation bubble in water,’’ Int. J. Multiphase Flow 144, 103792 (2021).

    Article  MathSciNet  Google Scholar 

  15. A. A. Aganin and I. N. Mustafin, ‘‘Numerical investigation of conditions on an external boundary of the computational domain in the problem of bubble dynamics in liquid,’’ Low-Temp. Plasma Process Appl. Funct. Coat. 61, 170–173 (2020).

    Google Scholar 

  16. I. Akhatov, O. Lindau, A. Topolnikov, A. Mettin, A. Vakhitova, and W. Lauterborn, ‘‘Collapse and rebound of a laser-induced cavitation bubble,’’ Phys. Fluids 13, 2805–2819 (2001).

    Article  MATH  Google Scholar 

  17. S. Fujikawa and T. Akamatsu, ‘‘Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid,’’ J. Fluid Mech. 97, 481–512 (1980).

    Article  MATH  Google Scholar 

  18. W. Lauterborn and T. Kurz, ‘‘Physics of bubble oscillations,’’ Rep. Prog. Phys. 73, 106501 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Mustafin.

Additional information

(Submitted by D. A. Gubaidullin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafin, I.N. Numerical Simulation of Collapse and Rebound of a Cavitation Bubble in Water. Lobachevskii J Math 44, 1771–1777 (2023). https://doi.org/10.1134/S1995080223050451

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223050451

Keywords:

Navigation