Skip to main content
Log in

Reflection and Transmission of a Sound Wave Through the Boundary of a Three-Phase Mixture

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The problem of reflection and transmission of sound waves through the interface between a pure liquid and a bubbly liquid with an admixture of solid particles has been considered. For a model of medium water/water with air bubbles and glass particles, the reflection coefficients are calculated. The influence of bubbles and particles on the reflection of waves is noted. A comparison of the theory with known experimental data is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. A. Prosperetti, ‘‘Vapor bubbles,’’ Ann. Rev. Fluid Mech. 49, 221–248 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Y. Varaksin, ‘‘Fluid dynamics and thermal physics of two-phase flows: Problems and achievements,’’ High Temp. 51, 377–407 (2013).

    Article  Google Scholar 

  3. R. N. Gafiyatov, ‘‘Acoustic wave incidence on a medium containing multifractional bubbly liquid,’’ Lobachevskii J. Math. 40, 730–733 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  4. D. A. Gubaidullin, D. D. Gubaidullina, and Yu. V. Fedorov, ‘‘The influence of heat transfer on the acoustics of a liquid with encapsulated bubbles,’’ Lobachevskii J. Math. 41, 1202–1205 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  5. D. A. Gubaidullin, D. D. Gubaidullina, and Yu. V. Fedorov, ‘‘Radial oscillations of a shell-covered gas bubble in a viscoelastic liquid,’’ Lobachevskii J. Math. 42, 2124–2128 (2021).

    Article  MATH  Google Scholar 

  6. R. N. Gafiyatov, ‘‘Features of acoustic wave transmission through a medium, containing a layer of multifractional bubbly liquid,’’ Lobachevskii J. Math. 41, 1180–1183 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Kawame and T. Kanagawa, ‘‘Weakly nonlinear propagation of pressure waves in bubbly liquids with a polydispersity based on two-fluid model equations,’’ Int. J. Multiphase Flow, 104369 (2022). https://doi.org/10.1016/j.ijmultiphaseflow.2022.104369

  8. D. A. Gubaidullin and Yu. V. Fedorov, ‘‘Acoustics of a viscoelastic medium with encapsulated bubbles,’’ J. Hydrodyn. 33, 55–62 (2021).

    Article  Google Scholar 

  9. R. N. Gafiyatov, ‘‘Interaction of an acoustic wave with a medium containing a layer of bubble liquid,’’ Lobachevskii J. Math. 43, 1094–1097 (2022).

    Article  MATH  Google Scholar 

  10. D. A. Gubaidullin, D. D. Gubaidullina, and Yu. V. Fedorov, ‘‘Mathematical modeling of the wave dynamics of an encapsulated perfluorocarbon droplet in a viscoelastic liquid,’’ Mathematics 11, 1083 (2023).

    Article  Google Scholar 

  11. T. Kanagawa, M. Honda, and Y. Kikuchi, ‘‘Nonlinear acoustic theory on flowing liquid containing multiple microbubbles coated by a compressible visco-elastic shell: Low and high frequency cases,’’ Phys. Fluids 35, 023303 (2023).

    Article  Google Scholar 

  12. Y. Kikuchi, T. Kanagawa, and T. Ayukai, ‘‘Physico-mathematical model for multiple ultrasound-contrast-agent microbubbles encapsulated by a visco-elastic shell: Effect of shell compressibility on ultrasound attenuation,’’ Chem. Eng. Sci. 269, 117541 (2023).

    Article  Google Scholar 

  13. C. M. Atkinson and H. K. Kytomaa, ‘‘Acoustic wave speed and attenuation in suspensions,’’ Int. J. Multiphase Flow 18, 577–592 (1992).

    Article  MATH  Google Scholar 

  14. H. K. Kytomaa, ‘‘Theory of sound propagation in suspensions: A guide to particle size and concentration characterization,’’ Powder Technol. 82, 115–121 (1995).

    Article  Google Scholar 

  15. J. M. Evans and K. Attenborough, ‘‘Coupled phase theory for sound propagation in emulsions,’’ J. Acoust. Soc. Am. 102, 278–282 (1997).

    Article  Google Scholar 

  16. J. M. Evans and K. Attenborough, ‘‘Sound propagation in concentrated emulsions: Comparison of coupled phase model and core-shell model,’’ J. Acoust. Soc. Am. 112, 1911–1917 (2002).

    Article  Google Scholar 

  17. V. E. Dontsov, V. E. Nakoryakov, and B. G. Pokusaev, ‘‘Reflection of pressure waves at the liquid–three-phase medium boundary,’’ Acoust. Phys. 42, 689 (1996).

    Google Scholar 

  18. V. E. Dontsov and B. G. Pokusaev, ‘‘Reflection of a shock wave from a solid wall in a liquid suspension with solid particles and gas bubbles,’’ Acoust. Phys. 45, 182 (1999).

    Google Scholar 

  19. D. A. Gubaidullin and Yu. V. Fedorov, ‘‘Peculiarities of acoustic wave reflection from a boundary or layer of a two-phase medium,’’ Acoust. Phys. 64, 164–174 (2018).

    Article  Google Scholar 

  20. D. A. Gubaidullin and Yu. V. Fedorov, ‘‘Acoustic waves in a liquid with solid particles and gas bubbles,’’ Fluid Dyn. 53, 248–254 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Strybulevych, V. Leroy, M. G. Scanlon, and J. H. Page, ‘‘Characterizing a model food gel containing bubbles and solid inclusions,’’ Soft Matter 3, 1388–1394 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. D. Gubaidullina or Yu. V. Fedorov.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubaidullina, D.D., Fedorov, Y.V. Reflection and Transmission of a Sound Wave Through the Boundary of a Three-Phase Mixture. Lobachevskii J Math 44, 1657–1660 (2023). https://doi.org/10.1134/S1995080223050244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223050244

Keywords:

Navigation