Skip to main content
Log in

Uniform Approximation by Polynomial Solutions of Elliptic Systems on Boundaries of Carathéodory Domains in \(\boldsymbol{\mathbb{R}}^{\mathbf{2}}\)

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the problem on uniform approximation of functions on compact subsets of the complex plane by polynomial solutions of general second-order elliptic systems with constant coefficients. This problem is well-known for the systems corresponding to second order equations with constant complex coefficients and is rather poor studied in the general case. In particular case, when the compact set where the approximation is considered is the boundary of a Carathéodory domain in the plane, we establish some new sufficient approximability conditions. We also discuss new measure orthogonality conditions that appear in the problem under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. O. Bagapsh, ‘‘On the geometric properties of the Poisson kernel for the Lame equation,’’ Comput. Math. Math. Phys. 59, 2124–2144 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. O. Bagapsh and K. Yu. Fedorovskiy, ‘‘Uniform and \(C^{1}\)-approximation of functions by solutions of second order elliptic systems on compact sets in \(\mathbb{R}^{2}\),’’ Proc. Steklov Inst. Math. 298, 35–50 (2017).

    Article  MATH  Google Scholar 

  3. A. O. Bagapsh and K. Yu. Fedorovskiy, ‘‘\(C^{m}\)-Approximation of functions by solutions of second-order elliptic systems on compact sets in the plane,’’ Proc. Steklov Inst. Math. 301, 1–10 (2018).

    Article  MathSciNet  Google Scholar 

  4. A. O. Bagapsh, K. Yu. Fedorovskiy, and M. Ya. Mazalov, ‘‘On Dirichlet problem for second-order elliptic equations in the plane and uniform approximation problems for solutions of such equations,’’ arXiv: 2106.00773 [math.CV] (2021).

  5. Yu. Belov, A. Borichev, and K. Fedorovskiy, ‘‘Nevanlinna domains with large boundaries,’’ J. Funct. Anal. 277, 2617–2643 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Boivin, P. M. Gauthier, and P. V. Paramonov, ‘‘On uniform approximation by n-analytic functions on closed sets in \(\mathbb{C}\),’’ Izv. Math. 68, 447–459 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. J. Carmona and K. Yu. Fedorovskiy, ‘‘Conformal maps and uniform approximation by polyanalytic functions,’’ in Selected Topics in Complex Analysis, Vol. 158 of Operator Theory: Advances and Applications (Birkhäuser, Basel, 2005), pp. 109–130.

  8. J. J. Carmona and K. Yu. Fedorovskiy, ‘‘New conditions for uniform approximation by polyanalytic polynomials,’’ Proc. Steklov Inst. Math. 279, 215–229 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. J. Carmona, P. V. Paramonov, and K. Yu. Fedorovskiy, ‘‘On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions,’’ Sb. Math. 193, 1469–1492 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Yu. Fedorovskiy, ‘‘Uniform \(n\)-analytic polynomial approximations of functions on rectifiable contours in \(\mathbb{C}\),’’ Math. Notes 59, 435–439 (1996).

    MathSciNet  Google Scholar 

  11. K. Yu. Fedorovskiy, ‘‘Two problems on approximation by solutions of elliptic systems on compact sets in the plane,’’ Complex Var. Elliptic Equat. 63, 961–975 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Yu. Fedorovskiy, ‘‘Nevanlinna domains and uniform approximation by polyanalytic polynomial modules,’’ in Fields Institute Monographs (2023, in press).

  13. T. W. Gamelin, Uniform Algebras (Chelsea, New York, 1984).

    MATH  Google Scholar 

  14. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, 2nd ed. (Nauka, Moscow, 1966; Am. Math. Soc., Providence, RI, 1969).

  15. Hua Loo Keng, Lin Wei, and Wu Ci-Quian, Second-Order Systems of Partial Differential Equations in the Plane (Pitman Advanced, Boston, London, Melbourne, 1985).

    Google Scholar 

  16. H. Lebesgue, ‘‘Sur le problème de Dirichlet,’’ R. C. Mat. Palermo 29, 371–402 (1907).

    Article  MATH  Google Scholar 

  17. M. Ya. Mazalov, P. V. Paramonov, and K. Yu. Fedorovskiy, ‘‘Conditions for \(C^{m}\)-approximability of functions by solutions of elliptic equations,’’ Russ. Math. Surv. 67, 1023–1068 (2012).

    Article  MATH  Google Scholar 

  18. M. Ya. Mazalov, ‘‘A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients,’’ Sb. Math. 211, 1267–1309 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Ya. Mazalov, ‘‘Uniform approximation of functions by solutions of second order homogeneous strongly elliptic equations on compact sets in \(\mathbb{R}^{2}\),’’ Izv. Math. 85, 421–456 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Narasimhan, Analysis on Real and Complex Manifolds, Vol. 1 of Advanced Studies in Pure Mathematics (North-Holland, Amsterdam, 1968).

  21. P. V. Paramonov, ‘‘\(C^{m}\)-approximations by harmonic polynomials on compact sets in \(\mathbb{R}^{n}\),’’ Russ. Acad. Sci. Sb. Math. 78, 231–251 (1994).

    Google Scholar 

  22. P. V. Paramonov, ‘‘Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of \(\mathbb{R}^{2}\),’’ Sb. Math. 212, 1730–1745 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  23. P. V. Paramonov and K. Yu. Fedorovskiy, ‘‘Uniform and \(C^{1}\)-approximability of functions on compact subsets of \(\mathbb{R}^{2}\) by solutions of second-order elliptic equations,’’ Sb. Math. 190, 285–307 (1999).

    Article  MathSciNet  Google Scholar 

  24. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Vol. 299 of Grundlehren der mathematischen Wissenschaften (Springer, Berlin, 1992).

  25. I. I. Privalov, Boundary Properties of Analytic Functions, 2nd ed. (GITTL, Moscow, 1950; VEB Deutscher Verlag der Wissenschaften, Berlin, 1956).

  26. N. N. Tarkhanov, ‘‘Uniform approximation by solutions of elliptic systems,’’ Math. USSR Sb. 61, 351–377 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  27. G. C. Verchota and A. L. Vogel, ‘‘Nonsymmetric systems on nonsmooth planar domains,’’ Trans. Am. Math. Soc. 349, 4501–4535 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  28. J. L. Walsh, ‘‘The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions,’’ Bull. Am. Math. Soc. 35, 499–544 (1929).

    Article  MathSciNet  MATH  Google Scholar 

  29. A. B. Zaitsev, ‘‘Uniform approximability of functions by polynomials of special classes on compact sets in \(\mathbb{R}^{2}\),’’ Math. Notes 71 (1), 68–79 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. B. Zaitsev, ‘‘Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets,’’ Izv. Math. 68, 1143–1156 (2004).

    Article  MathSciNet  Google Scholar 

  31. A. B. Zaitsev, ‘‘Uniform approximation by polynomial solutions of second-order elliptic equations, and the corresponding Dirichlet problem,’’ Proc. Steklov Inst. Math. 253, 57–70 (2006).

    Article  MATH  Google Scholar 

Download references

Funding

The work was performed within the framework of the project 22-11-00071 by the Russian Science Foundation, except the results presented in Section 4 that were obtained in the framework of the project no. 19-11-00058 by the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Fedorovskiy.

Additional information

(Submitted by F. G. Avhadiev)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorovskiy, K. Uniform Approximation by Polynomial Solutions of Elliptic Systems on Boundaries of Carathéodory Domains in \(\boldsymbol{\mathbb{R}}^{\mathbf{2}}\). Lobachevskii J Math 44, 1299–1310 (2023). https://doi.org/10.1134/S199508022304008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022304008X

Keywords:

Navigation