Skip to main content
Log in

Linear, Quasi-Monotonic and Hybrid Grid-Characteristic Schemes for Hyperbolic Equations

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Nowadays, the grid-characteristic method is gaining popularity for linear hyperbolic systems of equations. This method is commonly used for the simulation of the wave propagation process in deformable media. This problem requires specific properties of the used numerical method: a high approximation order and a monotonicity. One of the robust monotonicity criteria is the grid-characteristic one, proposed by A. S. Kholodov. This work is devoted to the adaptation of this approach for broaden spatial stencils. On the seven-point stencil the fifth order linear scheme and quasi-monotonic schemes were constructed. Their behavior was evaluated on the linear transport equation with the constant coefficient. Based on the problem with the initial condition of a complex form, the obtained numerical solution was compared with the other ones. The achieved approximation order was calculated based on the numerical experiment results. The detailed analysis was used to choose the scheme with the best behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws (Nauch. Kniga, Novosibirsk, 1998; Springer, New York, 2003). https://doi.org/10.1007/978-1-4757-5117-8

  2. H. Nishikawa and K. Kitamura, ‘‘Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers,’’ J. Comput. Phys. 227, 2560–2581 (2008). https://doi.org/10.1016/j.jcp.2007.11.003

    Article  MathSciNet  MATH  Google Scholar 

  3. I. B. Petrov, A. V. Vasyukov, K. A. Beklemysheva, E. S. Onuchin, and N. A. Tovarnova, ‘‘On numerical modeling of fiber deformation and destruction under impact load,’’ Dokl. Math. 105, 207–211 (2022). https://doi.org/10.1134/S1064562422030061

    Article  MATH  Google Scholar 

  4. H. Ali, H. Soleimani, N. Yahya, M. K. Baig, and A. Rostami, ‘‘Finite element method for modelling of two phase fluid flow in porous media,’’ J. Phys.: Conf. Ser. 1123, 012002 (2018). https://doi.org/10.1088/1742-6596/1123/1/012002

  5. M. Tavelli, S. Chiocchetti, E. Romenski, A.-A. Gabriel, and M. Dumbser, ‘‘Space-time adaptive ADER discontinuous Galerkin schemes for nonlinear hyperelasticity with material failure,’’ J. Comput. Phys. 422, 109758 (2020).

  6. V. Golubev, A. Shevchenko, N. Khokhlov, I. Petrov, and M. Malovichko, ‘‘Compact grid-characteristic scheme for the acoustic system with the piece-wise constant coefficients,’’ Int. J. Appl. Mech. 14, 2250002 (2022). https://doi.org/10.1142/S1758825122500028

  7. I. Nikitin and V. Golubev, ‘‘Higher order schemes for problems of dynamics of layered media with nonlinear contact conditions,’’ Smart Innov. Syst. Technol. 274, 273–287 (2022). https://doi.org/10.1007/978-981-16-8926-0_19

    Article  Google Scholar 

  8. V. I. Golubev, M. V. Muratov, E. K. Guseva, D. S. Konov, and I. B. Petrov, ‘‘Thermodynamic and mechanical problems of ice formations: Numerical simulation results,’’ Lobachevskii J. Math. 43, 970–979 (2022). https://doi.org/10.1134/S1995080222070113

    Article  MathSciNet  MATH  Google Scholar 

  9. S. K. Godunov, ‘‘A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations,’’ Mat. Sb. 47, 271–306 (1959).

    MathSciNet  MATH  Google Scholar 

  10. C. Berthon, ‘‘Stability of the MUSCL schemes for the Euler equations,’’ Commun. Math. Sci. 3, 133–157 (2005). https://doi.org/10.4310/CMS.2005.v3.n2.a3

    Article  MathSciNet  MATH  Google Scholar 

  11. C. W. Shu, B. Cockburn, C. Johnson, and E. Tadmor, ‘‘Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws,’’ in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Ed. by A. Quarteroni, Lect. Notes Math. 1697, 325–432 (1998). https://doi.org/10.1007/BFb0096355

  12. A. Harten, ‘‘High resolution schemes for hyperbolic conservation laws,’’ J. Comput. Phys. 135, 260–278 (1997).

    Article  MATH  Google Scholar 

  13. V. A. Titarev and E. F. Toro, ‘‘ADER: Arbitrary high order Godunov approach,’’ J. Sci. Comput. 17, 609–618 (2002). https://doi.org/10.1023/A:1015126814947

    Article  MathSciNet  MATH  Google Scholar 

  14. A. S. Kholodov and Ya. A. Kholodov, ‘‘Monotonicity criteria for difference schemes designed for hyperbolic equations,’’ Comput. Math. Math. Phys. 46, 1560–1588 (2006). https://doi.org/10.1134/S0965542506090089

    Article  MathSciNet  Google Scholar 

  15. A. S. Kholodov, ‘‘The construction of difference schemes of increased order of accuracy for equations of hyperbolic type,’’ USSR Comput. Math. Math. Phys. 20, 234–253 (1980). https://doi.org/10.1016/0041-5553(80)90017-8

    Article  MATH  Google Scholar 

  16. V. I. Golubev, E. K. Guseva, and I. B. Petrov, ‘‘Application of quasi-monotonic schemes in seismic arctic problems,’’ Smart Innov. Syst. Technol. 274, 289–307 (2022). https://doi.org/10.1007/978-981-16-8926-0_20

    Article  Google Scholar 

  17. I. B. Petrov, V. I. Golubev, and E. K. Guseva, ‘‘Hybrid grid-characteristic schemes for arctic seismic problems,’’ Dokl. Math. 104, 374–379 (2021). https://doi.org/10.31857/S2686954321060138

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was carried out with the financial support of the Russian Science Foundation, project no. 21-71-10015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. K. Guseva, V. I. Golubev or I. B. Petrov.

Additional information

(Submitted by A. V. Lapin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guseva, E.K., Golubev, V.I. & Petrov, I.B. Linear, Quasi-Monotonic and Hybrid Grid-Characteristic Schemes for Hyperbolic Equations. Lobachevskii J Math 44, 296–312 (2023). https://doi.org/10.1134/S1995080223010146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223010146

Keywords:

Navigation