Skip to main content
Log in

Periodic Solutions of Second Order Impulsive System for an Integro-Differential Equations with Maxima

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A boundary value problem for a second order system of ordinary integro-differential equations with impulsive effects and maxima is investigated. Obtained a system of nonlinear functional integral equations. The existence and uniqueness of the solution of the periodic boundary value problem are reduced to the solvability of the system of nonlinear functional integral equations. The method of successive approximations is used in the proof of one-valued solvability of nonlinear functional integral equations. The questions of practical calculating of periodic solutions to given second order impulsive system of integro-differential equations are reduced to the calculations of nonzero index of the singular point of the integral mean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. M. Benchohra, J. Henderson, and S. K. Ntouyas, Impulsive Differential Equations and Inclusions, Vol. 2 of Contemporary Mathematics and its Application (Hindawi, New York, 2006).

  2. A. Halanay and D. Veksler, Qualitative Theory of Pulse Systems (Mir, Moscow, 1971) [in Russian].

  3. V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations (World Scientific, Singapore, 1989).

    Book  Google Scholar 

  4. N. A. Perestyk, V. A. Plotnikov, A. M. Samoilenko, and N. V. Skripnik, Differential Equations with Impulse Effect: Multivalued Right-Hand Sides with Discontinuities, Vol. 40 of De Gruyter Studies in Mathematics (Walter de Gruter, Berlin, 2011).

  5. A. M. Samoilenko and N. A. Perestyk, Impulsive Differential Equations (World Sci., Singapore, 1995).

    Book  Google Scholar 

  6. I. Stamova and G. Stamov, ‘‘Impulsive biological models,’’ in Applied Impulsive Mathematical Models, Vol. 41 of CMS Books in Mathematics (Springer, Cham, 2016).

  7. J. Catlla, D. G. Schaeffer, Th. P. Witelski, E. E. Monson, and A. L. Lin, ‘‘On spiking models for synaptic activity and impulsive differential equations,’’ SIAM Rev. 50, 553–569 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. G. Fedorov and I. Yu. Popov, ‘‘Analysis of the limiting behavior of a biological neurons system with delay,’’ J. Phys.: Conf. Ser. 2086, 012109 (2021).

  9. E. G. Fedorov and I. Yu. Popov, ‘‘Hopf bifurcations in a network of Fitzhigh–Nagumo biological neurons,’’ Int. J. Nonlin. Sci. Numer. Simul. (2021).

  10. E. G. Fedorov, ‘‘Properties of an oriented ring of neurons with the FitzHugh–Nagumo model,’’ Nanosyst.: Phys. Chem. Math. 12, 553–562 (2021).

    Google Scholar 

  11. A. Anguraj and M. M. Arjunan, ‘‘Existence and uniqueness of mild and classical solutions of impulsive evolution equations,’’ Electron. J. Differ. Equat. 2005, 111-1–8 (2005).

  12. A. Ashyralyev and Ya. A. Sharifov, ‘‘Existence and uniqueness of solutions for nonlinear impulsive differential equations with two-point and integral boundary conditions,’’ Adv. Differ. Equat. 2013, 173 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Ashyralyev and Ya. A. Sharifov, ‘‘Optimal control problems for impulsive systems with integral boundary conditions,’’ Electron. J. Differ. Equat. 2013, 80-1–11 (2013).

  14. L. Bin, L. Xinzhi, and L. Xiaoxin, ‘‘Robust global exponential stability of uncertain impulsive systems,’’ Acta Math. Sci. 25, 161–169 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Li and M. Han, ‘‘Existence for neutral impulsive functional differential equations with nonlocal conditions,’’ Indagat. Math. 20, 435–451 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. J. Mardanov, Ya. A. Sharifov, and H. H. Molaei, ‘‘Existence and uniqueness of solutions for first-order nonlinear differential equations with two-point and integral boundary conditions,’’ Electron. J. Differ. Equat. 2014, 259-1–8 (2014).

  17. Ya. A. Sharifov, ‘‘Optimal control problem for systems with impulsive actions under nonlocal boundary conditions,’’ Vestn. Samar. Tekh. Univ., Ser.: Fiz.-Mat. Nauki 4 (33), 34–45 (2013).

    Google Scholar 

  18. Ya. A. Sharifov, ‘‘Optimal control for systems with impulsive actions under nonlocal boundary conditions,’’ Russ. Math. (Izv. VUZ) 57 (2), 65–72 (2013).

  19. Ya. A. Sharifov and N. B. Mammadova, ‘‘Optimal control problem described by impulsive differential equations with nonlocal boundary conditions,’’ Differ. Equat. 50, 403–411 (2014).

    MathSciNet  Google Scholar 

  20. Ya. A. Sharifov, ‘‘Conditions optimality in problems control with systems impulsive differential equations with nonlocal boundary conditions,’’ Ukr. Math. J. 64, 836–847 (2012).

    Article  MATH  Google Scholar 

  21. T. K. Yuldashev and A. K. Fayziev, ‘‘On a nonlinear impulsive differential equations with maxima,’’ Bull. Inst. Math. 4 (6), 42–49 (2021).

    Google Scholar 

  22. T. K. Yuldashev and A. K. Fayziev, ‘‘On a nonlinear impulsive system of integro-differential equations with degenerate kernel and maxima,’’ Nanosyst.: Phys. Chem. Math. 13 (1), 36–44 (2022).

    Google Scholar 

  23. T. K. Yuldashev, Kh. Kh. Saburov, and T. A. Abduvahobov, ‘‘Nonlocal problem for a nonlinear system of fractional order impulsive integro-differerntial equations with maxima,’’ Chelyab. Phys. Math. J. 7, 113–122 (2022).

    MATH  Google Scholar 

  24. T. K. Yuldashev, ‘‘On a nonlocal problem for impulsive differential equations with mixed maxima,’’ Bull. KRASEC, Phys. Math. Sci. 38, 40–53 (2022).

    MATH  Google Scholar 

  25. Ch. Bai and D. Yang, ‘‘Existence of solutions for second-order nonlinear impulsive differential equations with periodic boundary value conditions,’’ Bound. Value Probl. 2007, 41589-1–13 (2007).

  26. J. Chen, Ch. C. Tisdell, and R. Yuan, ‘‘On the solvability of periodic boundary value problems with impulse,’’ J. Math. Anal. Appl. 331, 902–912 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  27. X. Li, M. Bohner, and Ch.-K. Wang, ‘‘Impulsive differential equations: Periodic solutions and applications,’’ Automatica 52, 173–178 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  28. Z. Hu and M. Han, ‘‘Periodic solutions and bifurcations of first order periodic impulsive differential equations,’’ Int. J. Bifurc. Chaos 19, 2515–2530 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  29. A. M. Samoilenko and N. A. Perestyuk, ‘‘Periodic solutions of weakly nonlinear impulsive systems,’’ Differ. Uravn. 14, 1034–1045 (1978).

    Google Scholar 

  30. R. Ma, B. Yang, and Z. Wang, ‘‘Bifurcation of positive periodic solutions of first-order impulsive differential equations,’’ Bound. Value Probl. 2012, 83-1–16 (2012).

  31. R. I. Gladilina and A. O. Ignatyev, ‘‘On the stability of periodic impulsive systems,’’ Math. Notes 76, 41–47 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  32. T. K. Yuldashev, ‘‘Periodic solutions for an impulsive system of nonlinear differential equations with maxima,’’ Nanosyst.: Phys. Chem. Math. 13, 135–141 (2022).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. K. Yuldashev or F. U. Sulaimonov.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuldashev, T.K., Sulaimonov, F.U. Periodic Solutions of Second Order Impulsive System for an Integro-Differential Equations with Maxima. Lobachevskii J Math 43, 3674–3685 (2022). https://doi.org/10.1134/S1995080222150306

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222150306

Keywords:

Navigation