Skip to main content
Log in

The Number of Fragments of the Perfect Class of the Jonsson Spectrum

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this article, we consider the notion of the Jonsson spectrum of some subclass of existentially closed models of a fixed Jonsson theory. For an arbitrary model of an arbitrary signature, the class of existentially closed models in that signature is considered, in which this arbitrary model is isomorphically embedded. The model-theoretical properties of the Kaiser Hull of this class are studied. In the language of central types of permissible enrichments, the properties of the considered fragments for special definable subsets of the semantic model of a fixed Jonsson theory are studied. The main result of this work is an estimate of the number of such fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. J. Barwise, Handbook of Mathematical Logic, Model Theory, Part 1, Vol. 90 of Studies in Logic and the Foundations of Mathematics (North-Holland, Amsterdam, 1989).

  2. B. Jonsson, ‘‘Homogeneous universal relational systems,’’ Math. Scand. 8, 137–142 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Jonsson, ‘‘Universal relational systems,’’ Math. Scand. 4, 193–208 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Morley and R. L. Vaught, ‘‘Homogeneous universal models,’’ Math. Scand. 11, 37–57 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  5. T. G. Mustafin, ‘‘Generalized Jonsson conditions and a description of generalized Jonsson theories of boolean algebras,’’ Sib. Adv. Math. 10 (3), 1–58 (2000).

    MATH  Google Scholar 

  6. A. R. Yeshkeyev, ‘‘Perfect Jonsson theories,’’ in Proceedings of the 3rd International Conference on Algebra (Krasnoyarsk, 1993).

  7. A. R. Yeshkeyev, ‘‘On Jonsson stability and some of its generalizations,’’ J. Math. Sci. 166, 646–654 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. R. Yeshkeyev, ‘‘The structure of lattices of positive existential formulae of (\(\triangle\)-PJ)-theories,’’ Sci. Asia, J. Sci. Soc. Thailand 39, 19–24 (2013).

    Article  Google Scholar 

  9. A. R. Yeshkeyev, ‘‘Companions of the fragments in the Jonsson sets,’’ Bull. Karaganda Univ.: Math. 85, 41–45 (2017).

    Article  Google Scholar 

  10. B. Poizat and A. R. Yeshkeyev, ‘‘Positive Jonsson theories,’’ Logica Univ. 12, 101–127 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. R. Yeshkeyev and M. T. Omarova, ‘‘Companions of \((n_{1},n_{2})\)-Jonsson theory,’’ Bull. Karaganda Univ.: Math. 96 (4), 75–80 (2019).

    Article  Google Scholar 

  12. Y. T. Mustafin, ‘‘Quelques proprietes des theories de Jonsson,’’ J. Symbol. Logic 67, 528–536 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. R. Yeshkeyev, ‘‘On \(J\)-stability of Jonsson’s theories,’’ in Proceedings of the 9th Asian Logic Conference (2005), pp. 73–74.

  14. A. R. Yeshkeyev, ‘‘Properties of companions of Jonsson’s theory,’’ in Proceedings of the Model Theory and Algebra France–Kazakhstan Conference (Astana, 2005), p. 77.

  15. A. R. Yeshkeyev, M. T. Kassymetova, and N. K. Shamatayeva, ‘‘Model-theoretic properties of the \(\#\)-companion of a Jonsson set,’’ Euras. Math. J. 9 (2), 68–81 (2018).

    Article  MATH  Google Scholar 

  16. A. R. Yeshkeyev and M. T. Kassymetova, Jonsson Theories and their Model Classes (KarGU, Karaganda, 2016) [in Russian].

  17. T. G. Mustafin, ‘‘On similarities of complete theories,’’ in Proceedings of the Logic Colloquium ’90: Annual European Summer Meeting of the Association for Symbolic Logic (Helsinki, 1990), pp. 259–265.

  18. A. R. Yeshkeyev and O. I. Ulbrikht, ‘‘JSp-cosemanticity and JSB property of abelian groups,’’ Sib. Elektron. Mat. Izv. 13, 861–874 (2016).

    MATH  Google Scholar 

  19. A. R. Yeshkeyev and O. I. Ulbrikht, ‘‘JSp-cosemanticity of \(R\)-modules,’’ Sib. Elektron. Mat. Izv. 16, 1233–1244 (2019).

    Google Scholar 

  20. A. R. Yeshkeyev, M. T. Kassymetova, and O. I. Ulbrikht, ‘‘Independence and simplicity in Jonsson’s theories with abstract geometry,’’ Sib. Elektron. Mat. Izv. 16, 433–455 (2019).

    MATH  Google Scholar 

  21. D. W. Kueker, ‘‘Core structures for theories,’’ Fundam. Math. 89, 154–171 (1973).

    MathSciNet  Google Scholar 

  22. T. G. Mustafin, ‘‘On a strong base of elementary types of theories,’’ Sib. Mat. Zh. 18, 1356–1366 (1977).

    MATH  Google Scholar 

  23. T. G. Mustafin, ‘‘New notions of stability of theories,’’ in Model Theory, Proceedings of the Sov.-Fr. Colloquium, Karaganda, USSR (1990), pp. 112–125.

  24. E. A. Palyutin, ‘‘\(E^{*}\)-stable theories,’’ Algebra Logic 42, 112–120 (2003).

    Article  MathSciNet  Google Scholar 

  25. W. Hodges, Encyclopedia of Mathematics and its Applications, Vol. 42: Model Theory, Ed. by G.-C. Rota (Cambridge Univ. Press, Cambridge, 1993).

  26. A. R. Yeshkeyev, M. T. Omarova, and G. E. Zhumabekova, ‘‘The \(J\)-minimal sets in the hereditary theories,’’ Bull. Karaganda Univ.: Math. 94 (2), 92–98 (2019).

    Article  Google Scholar 

  27. A. R. Yeshkeyev and M. T. Kassymetova, ‘‘Pregeometry on the subsets of Jonsson theory’s semantic model,’’ Bull. Karaganda Univ.: Math. 90 (2), 88–92 (2018).

    Article  Google Scholar 

  28. A. R. Yeshkeyev and M. T. Omarova, ‘‘An essential base of the central types of the convex theory,’’ Bull. Karaganda Univ.: Math. 101 (1), 119–126 (2021).

    Article  Google Scholar 

  29. J. T. Baldwin and D. W. Kueker, ‘‘Algebraically prime models,’’ Ann. Math. Logic 20, 289–330 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  30. R. L. Vaught, ‘‘Denumerable models of complete theories,’’ in Proceedings of the Symposium on Foundations of Mathematics, Infinitistic Methods (Warsaw, 1959).

  31. A. Robinson, Introduction to the Model Theory and the Metamathematics of Algebra (North-Holland, Amsterdam, 1963).

    MATH  Google Scholar 

  32. A. R. Yeshkeyev, ‘‘Model-theoretical questions of the Jonsson spectrum,’’ Bull. Karaganda Univ.: Math. 98 (2), 165–173 (2020).

    Article  Google Scholar 

  33. J. T. Baldwin, Categoricity (Univ. Illinois, Chicago, 1988).

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (grant AP09260237).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. R. Yeshkeyev, O. I. Ulbrikht or M. T. Omarova.

Additional information

(Submitted byM. M. Arslanov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeshkeyev, A.R., Ulbrikht, O.I. & Omarova, M.T. The Number of Fragments of the Perfect Class of the Jonsson Spectrum. Lobachevskii J Math 43, 3658–3673 (2022). https://doi.org/10.1134/S199508022215029X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022215029X

Keywords:

Navigation