Skip to main content
Log in

Inverse Problems for a Three-Dimensional Equation of Parabolic-Hyperbolic Type in Finding Time-Dependent Factors of the Right-Hand Sides

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

For an inhomogeneous three-dimensional equation of mixed parabolic-hyperbolic type in a rectangular parallelepiped, a direct initial-boundary problem is studied. A criterion for the uniqueness of a solution is established. The solution is constructed as the sum of an orthogonal series. In substantiating the convergence of the series, the problem of small denominators of two natural arguments arose. Estimates are established for the separation from zero of the small denominators with the corresponding asymptotics. These estimates made it possible to justify the convergence of the constructed series in the class of regular solutions of this equation. Based on the solution of the direct problem, three inverse problems were posed and studied to find the time-dependent factor of the right-hand side only from the parabolic or hyperbolic part of the equation, and when the factors from both sides of the equation are unknown at the same time. The solution of inverse problems is equivalently reduced to the solvability of loaded integral equations. Based on the theory of integral equations, the corresponding uniqueness and existence theorems are proved for solutions of the inverse problems posed. Moreover, the solutions of inverse problems are constructed in an explicit form — as the sum of orthogonal series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. I. M. Gel’fand, ‘‘Some questions of analysis and differential equations,’’ Usp. Mat. Nauk 14 (3), 3–19 (1959).

    MathSciNet  Google Scholar 

  2. Ya. S. Uflyand, ‘‘On the question of the propagation of oscillations in compound electric lines,’’ Eng. Phys. J. 7, 89–92 (1964).

    Google Scholar 

  3. Ya. S. Uflyand and I. T. Lozanovskaya, ‘‘On a class of problems of mathematical physics with a mixed spectrum of eigenvalues,’’ Dokl. Akad. Nauk SSSR 164, 1005–1007 (1965).

    MATH  Google Scholar 

  4. T. D. Dzhuraev, A. Sopuev, and M. Mamazhanov, Boundary Value Problems for Parabolic-Hyperbolic Equations (Fan, Tashkent, 1986) [in Russian].

  5. O. A. Ladyzhenskaya and L. Stupyalis, ‘‘On mixed-type equations,’’ Vestn. Leningr. Univ., Ser.: Mat. Mekh. Astron. 19 (4), 38–46 (1965).

    Google Scholar 

  6. L. Stupyalis, ‘‘Initial-boundary value problems for equations of mixed type,’’ Tr. Inst. Mat. Steklova 127, 135–170 (1975).

    MathSciNet  Google Scholar 

  7. B. I. Ptashnyk, Ill-Posed Boundary-Value Problems for Partial Differential Equations (Naukova Dumka, Kiev, 1984) [in Russian].

    Google Scholar 

  8. K. B. Sabitov, ‘‘The Tricomi problem for a mixed parabolic-hyperbolic equation in a rectangular domain,’’ Math. Notes 86, 249–254 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. K. B. Sabitov, Direct and Inverse Problems for Equations of Mixed Parabolic-Hyperbolic Type (Nauka, Moscow, 2016) [in Russian].

    Google Scholar 

  10. K. B. Sabitov, ‘‘Initial boundary and inverse problems for the inhomogeneous equation of a mixed parabolic-hyperbolic equation,’’ Math. Notes 102, 378–395 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. N. Sidorov, ‘‘Nonlocal problem for a degenerate parabolic-hyperbolic equation,’’ Dokl. Adyg. Mezhdun. Akad. Nauk 14 (3), 34–44 (2012).

    Google Scholar 

  12. K. B. Sabitov and S. N. Sidorov, ‘‘On a nonlocal problem for a degenerating parabolic-hyperbolic equation,’’ Differ. Equat. 50, 352–361 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. N. Sidorov, ‘‘Nonlocal problems for an equation of mixed parabolic-hyperbolic type with power degeneration,’’ Russ. Math. (Iz. VUZ) 59 (12), 46–55 (2015).

  14. K. B. Sabitov and S. N. Sidorov, ‘‘Initial-boundary-value problem for inhomogeneous degenerate equations of mixed parabolic-hyperbolic type,’’ Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh. Temat. Obz. 137, 26–60 (2017).

    Google Scholar 

  15. K. B. Sabitov and S. N. Sidorov, ‘‘Initial-boundary-value problem for inhomogeneous degenerate equations of mixed parabolic-hyperbolic type,’’ J. Math. Sci. 236, 603–640 (2019).

    Article  MATH  Google Scholar 

  16. M. M. Lavrentyev, K. G. Reznitskaya, and V. G. Yakhno, One-Dimensional Inverse Problems of Mathematical Physics (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  17. V. G. Romanov, Inverse Problems of Mathematical Physics (Nauka, Moscow, 1984) [in Russian].

  18. V. G. Romanov and S. I. Kabanikhin, Inverse Geo-Electrical Problems (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  19. A. M. Denisov, Introduction to the Theory of Inverse Problems (Mosk. Gos. Univ., Moscow, 1994) [in Russian].

    Google Scholar 

  20. A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics (Marcel Dekker, New York, 1999).

    MATH  Google Scholar 

  21. V. Isakov, Inverse Problems for Partial Differential Equations (Springer, New York, 2006).

    MATH  Google Scholar 

  22. S. I. Kabanikhin, Inverse and Incorrect Tasks (Siberian Sci., Novosibirsk, 2009) [in Russian].

    Google Scholar 

  23. A. I. Prilepko and V. V. Soloviev, ‘‘Solvability theorems and the Rote method in inverse problems for a parabolic equation, I, II,’’ Differ. Equat. 23, 1791–1799 (1987); 1971–1980 (1987).

  24. A. I. Prilepko and I. A. Vasin, ‘‘Study of uniqueness problems in some nonlinear inverse problems of hydrodynamics,’’ Differ. Equat. 26, 109–120 (1990).

    MATH  Google Scholar 

  25. A. I. Prilepko and A. B. Kostin, ‘‘Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations,’’ Math. Notes 53, 63–66 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  26. V. V. Soloviev, ‘‘Determination of the source and coefficients in a parabolic equation in the multidimensional case,’’ Differ. Equat. 31, 1060–1069 (1995).

    MathSciNet  Google Scholar 

  27. V. V. Soloviev, ‘‘The existence of a solution in the ‘‘whole’’ inverse problem of determining the source in a quasilinear parabolic equation,’’ Differ. Equat. 32, 536–544 (1996).

    Google Scholar 

  28. A. B. Kostin, ‘‘The inverse problem of recovering the source in a parabolic equation under a condition of nonlocal observation,’’ Sb.: Math. 204, 1391–1434 (2013).

    MathSciNet  MATH  Google Scholar 

  29. A. I. Kozhanov, ‘‘A nonlinear loaded parabolic equation and a related inverse problem,’’ Math. Notes 76, 784–795 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. I. Kozhanov and R. R. Safiullova, ‘‘Linear inverse problems for parabolic and hyperbolic equations,’’ J. Inverse Ill-Posed Probl. 18, 1–18 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  31. K. B. Sabitov and E. M. Safin, ‘‘The inverse problem for a mixed-type parabolic-hyperbolic equation in a rectangular domain,’’ Russ. Math. (Iz. VUZ) 54 (4), 48–54 (2010).

  32. K. B. Sabitov and E. M. Safin, ‘‘The inverse problem for an equation of mixed parabolic-hyperbolic type,’’ Math. Notes 87, 880–889 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  33. K. B. Sabitov and S. N. Sidorov, ‘‘Inverse problem for degenerate parabolic-hyperbolic equation with nonlocal boundary condition,’’ Russ. Math. (Iz. VUZ) 59, 39–50 (2015).

  34. S. N. Sidorov, ‘‘Inverse problems for a mixed parabolic-hyperbolic equation with adegenerate parabolic part,’’ Sib. Electron. Math. Rep. 16, 144–157 (2019).

    MATH  Google Scholar 

  35. S. N. Sidorov, ‘‘Inverse problems for a degenerate mixedparabolic-hyperbolic equation on findingtime-depending factors in right hand sides,’’ Ufa Math. J. 11, 75–89 (2019).

    Article  MathSciNet  Google Scholar 

  36. K. B. Sabitov and S. N. Sidorov, ‘‘Initial boundary value problem for a three-dimensional equation of parabolic-hyperbolic type,’’ Differ. Equat. 57, 1042–1052 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  37. A. A. Bukhshtab, Number Theory (Lan’, St. Petersburg, 2008) [in Russian].

  38. A. Zygmund, Trigonometric Series, Cambridge Mathematical Library (Cambridge Univ. Press, Cambridge, 2003), Vol. 1.

    Book  Google Scholar 

  39. K. B. Sabitov, Functional, Differential and Integral Equations (Vysshaya Shkola, Moscow, 2005) [in Russian].

Download references

Funding

The reported study was funded by RFBR, project number 19-31-60016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Sidorov.

Additional information

(Submitted by A. B. Muravnik)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorov, S.N. Inverse Problems for a Three-Dimensional Equation of Parabolic-Hyperbolic Type in Finding Time-Dependent Factors of the Right-Hand Sides. Lobachevskii J Math 43, 3641–3657 (2022). https://doi.org/10.1134/S1995080222150288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222150288

Keywords:

Navigation