Skip to main content
Log in

A Computational Method for Solving a Boundary-Value Problem for Differential Equations with Piecewise Constant Argument of Generalized Type

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this article, a two-point boundary-value problem for a differential equation with piecewise constant argument of generalized type is solved. We develop a numerical algorithm that is based on the parametrization method proposed by Dzhumabaev. The proposed algorithm is expanded to find a numerical solution to the boundary-value problem for differential equations with piecewise constant argument of generalized type. The results are illustrated by numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. M. Akhmet and E. Yilmaz, Neural Networks with Discontinuous/Impact Activations (Springer, New York, 2014).

    Book  MATH  Google Scholar 

  2. M. U. Akhmet, ‘‘Almost periodic solution of differential equations with piecewise-constant argument of generalized type,’’ Nonlin. Anal. – Hybrid Syst. 2, 456–467 (2008).

    MathSciNet  MATH  Google Scholar 

  3. M. U. Akhmet, ‘‘Integral manifolds of differential equations with piecewise-constant argument of generalized type,’’ Nonlin. Anal. - Theory Methods Appl. 66, 367–383 (2007).

    Article  MATH  Google Scholar 

  4. M. U. Akhmet, ‘‘On the reduction principle for differential equations with piecewise-constant argument of generalized type,’’ J. Math. Anal. Appl. 336, 646–663 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. U. Akhmet, Nonlinear Hybrid Continuous/Discrete Time Models (Atlantis, Amsterdam, 2011)

    Book  MATH  Google Scholar 

  6. M. U. Akhmet, Principles of Discontinuous Dynamical Systems (Springer, New York, 2010).

    Book  MATH  Google Scholar 

  7. M. U. Akhmet, ‘‘Global attractivity in impulsive neural networks with piecewise constant delay,’’ in Proceedings of Neural, Parallel, and Scientific Computations (Dynamic Publ., Atlanta, GA, 2010), pp. 11–18.

  8. A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations (World Scientific, Singapore, 1995).

    Book  MATH  Google Scholar 

  9. A. T. Assanova, ‘‘Hyperbolic equation with piecewise-constant argument of generalized type and solving boundary value problems for it,’’ Lobachevskii J. Math. 42, 3584–3593 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  10. D. S. Dzhumabaev, ‘‘Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation,’’ USSR Comput. Math. Math. Phys. 29, 34–46 (1989).

    Article  MATH  Google Scholar 

  11. S. M. Temesheva, D. S. Dzhumabaev, and S. S. Kabdrakhova, ‘‘On one algorithm to find a solution to a linear two-point boundary value problem,’’ Lobachevskii J. Math. 42, 606–612 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. S. Dzhumabaev, K. Z. Nazarova, and R. E. Uteshova, ‘‘A modification of the parameterization method for a linear boundary value problem for a Fredholm integro-differential equation,’’ Lobachevskii J. Math. 41, 1791–1800 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  13. Zh. M. Kadirbayeva, S. S. Kabdrakhova, and S. T. Mynbayeva, ‘‘A computational method for solving the boundary value problem for impulsive systems of essentially loaded differential equations,’’ Lobachevskii J. Math. 42, 3675–3683 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  14. D. S. Dzhumabaev, ‘‘On one approach to solve the linear boundary value problems for Fredholm integro-differential equations,’’ J. Comp. Appl. Math. 294, 342–357 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. M. Nakhushev, Loaded Equations and their Applications (Nauka, Moscow, 2012) [in Russian].

    MATH  Google Scholar 

  16. A. M. Nakhushev, ‘‘An approximation method for solving boundary value problems for differential equations with applications to the dynamics of soil moisture and groundwater,’’ Differ. Uravn. 18, 72–81 (1982).

    MathSciNet  Google Scholar 

  17. D. S. Dzhumabaev, E. A. Bakirova, and S. T. Mynbayeva, ‘‘A method of solving a nonlinear boundary value problem with a parameter for a loaded differential equation,’’ Math. Methods Appl. Sci. 4, 1788–1802 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  18. T. K. Yuldashev, ‘‘On a boundary-value problem for a fourth-order partial integro-differential equation with degenerate kernel,’’ J. Math. Sci. 245, 508–523 (2020).

    Article  MATH  Google Scholar 

  19. T. K. Yuldashev, ‘‘Solvability of a boundary value problem for a differential equation of the Boussinesq type,’’ Differ. Equat. 54, 1384–1393 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  20. T. K. Yuldashev, ‘‘On Fredholm partial integro-differential equation of the third order,’’ Russ. Math. 59 (9), 62–66 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  21. T. K. Yuldashev and O. Kh. Abdullaev, ‘‘Unique solvability of a boundary value problem for a loaded fractional parabolic-hyperbolic equation with nonlinear terms,’’ Lobachevskii J. Math. 42, 1113–1123 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  22. T. K. Yuldashev, B. I. Islomov, and A. A. Abdullaev, ‘‘On solvability of a Poincare–Tricomi type problem for an elliptic-hyperbolic equation of the second kind,’’ Lobachevskii J. Math. 42, 663–675 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  23. T. K. Yuldashev, B. I. Islomov, and E. K. Alikulov, ‘‘Boundary-value problems for loaded third-order parabolic-hyperbolic equations in infinite three-dimensional domains,’’ Lobachevskii J. Math. 41, 926–944 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. T. Dzhenaliev, ‘‘Loaded equations with periodic boundary conditions,’’ Differ. Equat. 37, 51–57 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  25. V. M. Abdullaev and K. R. Aida-zade, ‘‘Numerical method of solution to loaded nonlocal boundary value problems for ordinary differential equations,’’ Comput. Math. Math. Phys. 54, 1096–1109 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. T. Assanova and Zh. M. Kadirbayeva, ‘‘Periodic problem for an impulsive system of the loaded hyperbolic equations,’’ El. J. Differ. Equat. 72, 1–8 (2018).

    MathSciNet  MATH  Google Scholar 

  27. A. T. Assanova, A. E. Imanchiyev, and Zh. M. Kadirbayeva, ‘‘Numerical solution of systems of loaded ordinary differential equations with multipoint conditions,’’ Comput. Math. Math. Phys. 58, 508–516 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. T. Assanova and Zh. M. Kadirbayeva, ‘‘On the numerical algorithms of parametrization method for solving a two-point boundary-value problem for impulsive systems of loaded differential equations,’’ Comput. Appl. Math. 37, 4966–4976 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  29. Zh. M. Kadirbayeva, ‘‘A numerical method for solving boundary value problem for essentially loaded differential equations,’’ Lobachevskii J. Math. 42, 551–559 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  30. Zh. M. Kadirbayeva and A. D. Dzhumabaev, ‘‘Numerical implementation of solving a control problem for loaded differential equations with multi-point condition,’’ Bull. Karaganda Univ., Math. 100 (4), 81–91 (2020).

    Google Scholar 

  31. L. S. Pulkina, ‘‘A nonlocal problem for a loaded hyperbolic equation,’’ Proc. Steklov Inst. Math. 236, 285–290 (2002).

    MathSciNet  Google Scholar 

  32. A. Kh. Attaev, ‘‘The Cauchy problem for the McKendrick-Von Foerster loaded equation,’’ Int. J. Pure Appl. Math. 113, 569–574 (2017).

    Google Scholar 

  33. A. I. Kozhanov and T. N. Shipina, ‘‘Loaded differential equations and linear inverse problems for elliptic equations,’’ Complex Variab. Ellipt. Equat. 66, 910–928 (2021).

    MATH  Google Scholar 

  34. A. I. Kozhanov, ‘‘Nonlinear loaded equations and inverse problems,’’ Comput. Math. Math. Phys. 44, 657–675 (2004).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (grant no. AP08855726).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Bakirova, Zh. M. Kadirbayeva or G. I. Salgarayeva.

Additional information

(Submitted by A. T. Assanova)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakirova, E.A., Kadirbayeva, Z.M. & Salgarayeva, G.I. A Computational Method for Solving a Boundary-Value Problem for Differential Equations with Piecewise Constant Argument of Generalized Type. Lobachevskii J Math 43, 3057–3064 (2022). https://doi.org/10.1134/S1995080222140050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222140050

Keywords:

Navigation