Skip to main content
Log in

Convergence of Bounded Sequences in Hilbert \(\boldsymbol{C}^{\mathbf{*}}\)-Modules

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we provide necessary conditions for the convergence of a net which is monotone and bounded with respect to the diamond order. Also, we show that each bounded sequence in a Hilbert \({\mathcal{A}}\)-module has a convergent subsequence. Moreover, we prove that a module map \(\Phi\) preserves the orthonormality of a basis whenever it is a surjective \(\varphi\)-morphism. Finally, we present sufficient conditions for a Hilbert \({\mathcal{A}}\)-module to be finite-dimensional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lj. Arambasic, D. Bakic, and R. Rajic, ‘‘Finite-dimensional Hilbert \(C^{*}\)-modules,’’ Banach J. Math. Anal. 4, 147–157 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Bakic and B. Guljas, ‘‘Hilbert \(C^{*}\)-modules over \(C^{*}\)-algebras of compact operators,’’ Acta Sci. Math. (Szeged) 68 (1B-2), 249–269 (2002).

  3. J. Farokhi-ostad and M. Mohammadzadeh Karizaki, ‘‘The new condition for bi-normal and bi-dagger operators,’’ Wavelets Linear Algebra (2022, submitted).

  4. A. R. Janfada and J. Farokhi-ostad, ‘‘Two equal range operators on Hilbert \(C^{*}\)-Modules,’’ Sahand Commun. Math. Anal. 18 (2), 85–96 (2021).

    MATH  Google Scholar 

  5. A. R. Janfada and J. Farokhi-ostad, ‘‘On closed ranges \(C^{*}\)-Modular operators,’’ Austral. J. Math. Anal. Appl. 15 (2), 1–9 (2018).

    MATH  Google Scholar 

  6. E. C. Lance, Hilbert \(C^{*}\) -Modules, Vol. 210 of LMS Lecture Note Series (Cambridge Univ. Press, Cambridge, 1995).

  7. V. M. Manuilov and E. V. Troitsky, Hilbert \(C^{*}\) -Modules, Vol. 226 of Translations of Mathematical Monographs (Am. Math. Soc., Providence, RI, 2005).

  8. D. Bakic and B. Guljas ‘‘On a class of module maps of Hilbert \(C^{*}\)-modules,’’ Math. Commun. 7, 177–192 (2002).

    MathSciNet  MATH  Google Scholar 

  9. S. Izumino, ‘‘The product of operators with closed range and an extension of the reverse order law,’’ Tohoku Math. J. 34 (2), 43–52 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Cirulis, ‘‘The diamond partial order for strong Rickart rings,’’ Lin. Multilin. Algebra 65, 192–203 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Lebtahi, P. Patriciob, and N. Thomea, ‘‘The diamond partial order in rings,’’ Lin. Multilin. Algebra 62, 386–395 (2014).

    Article  MathSciNet  Google Scholar 

  12. L. Lebtahi, P. Patriciob, and N. Thomea, ‘‘The diamond partial order in rings,’’ Lin. Multilin. Algebra 62, 386–395 (2014).

    Article  MathSciNet  Google Scholar 

  13. M. Mohammadzadeh Karizaki and D. S. Djordjevic, ‘‘Commuting \(C^{*}\)- modular operators,’’ Aequat. Math. 90, 1103–1114 (2019).

    Article  MATH  Google Scholar 

  14. Q. Xu and L. Sheng, ‘‘Positive semi-definite matrices of adjointable operators on Hilbert \(C^{*}\)-modules,’’ Linear Algebra Appl. 428, 992–1000 (2008).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Farokhi-Ostad.

Additional information

(Submitted by A. I. Volodin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janfada, A.R., Farokhi-Ostad, J. Convergence of Bounded Sequences in Hilbert \(\boldsymbol{C}^{\mathbf{*}}\)-Modules. Lobachevskii J Math 43, 2493–2500 (2022). https://doi.org/10.1134/S1995080222120150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222120150

Keywords:

Navigation